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Various lateral inhibition neural networks are studied by means of computer simulation regarding their
ability to sharpen the input excitation curves. To quantify this ability we introduced two new entropy-like
quantities (called the iteration entropy and the rate of convergence) which represent suitable measures for
the sharpening of the input excitation curves in a certain lateral inhibition neural network. Using these
quantities we quantitatively described the sharpening ability of different lateral inhibition networks.

1. Introduction

The lateral inhibition is a well-known phenomenon
in neurophysiology.!? It has been found at a num-
ber of places in CNS, e.g. in nucleus cuneatus and
thalamus as a part of the somestetic afferentation.!?
Early studies on lateral inhibition in different neural
networks appeared in the sixties.!!® They were mo-
tivated by the possible existence of the lateral inhibi-
tion mechanism in some sensory analysers.*3 Since
then the lateral inhibition networks are the subject of
continuous interest! mainly for their ability of sharp-
ening the input excitation curves in sensory analy-
sers. As is well known the frequency discrimination
tuning curves in cochlea® are too broad for the fine
frequency discrimination of the human ear, therefore
a sharpening procedure must take place somewhere
in neural network of auditory system. A neural net-
work with the lateral inhibition seems to be most
suitable for this sharpening procedure. Lateral inhi-
bition is also connected with the problems of contrast
enhancement and with mechanisms that prevent the
interference of different neural processes. These net-
works can be used as maximum-finders, e.g. the
Hamming network.” The question arises: How are
various types of lateral inhibition networks effective
in sharpening of different input excitation curves?
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In order to answer this question we studied several
lateral inhibition network models and quantify them
with respect to this ability.

2. The Model

We consider neural networks of L one-dimensional
layers each of which consists of N neurons (process-
ing elements-PEs). The neurons of the zth layer
are only connected with neurons of (z + 1)th layer.
Denoting the activity (pulsation) of i-neuron in zth
layer as ¢[i].;, the activity of ith neuron in (z + 1)th
layer is given by the equation
i+M
Pliles = f (2 wlklolils - ek) O
i-M
where f is the step function

1 if t>0
f(t)=-[
0 if ¢<0.

wli] is the corresponding connection weights and © is
the neuron threshold value. w[f] is positive or nega-
tive for the excitatory or inhibitory connection of the
neighbouring neurons, respectively. There are differ-
ent types of one-dimensional networks according to
the weights one takes in Eq. (1). If w[i] is always
positive (i.e. the connection between ith neuron in
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zth layer and ith neuron in (z + 1)th layer is an
excitatory one) and wik]s (k=i—-M,i—-M+1, i—
M+2,...,i-1,i+1,..., i+ M) (i.e. the connection
between kth neuron in zth layer and the ith neuron
in (z+1)th layer) is an inhibitory one, then we have a
lateral inhibition network (see Fig. 1(a)). Each one-
dimensional lateral inhibition neural network (LINN)
is given by the following parameters:

(i) the excitatory weight w(i],
(ii) the inhibitory weights w(k],
(iii) the threshold value © and
(iv) the connectivity defined as ¢ = M/N.

According to the choice of the foregoing parame-
ters, there is a variety of possible LINNs. In the com-
puter modelling the real one-dimensional L-layered
neuron network is represented by an iterative net-
work (i.e. the neurons’ outputs are led back to the
input of the network). Here, the rth iteration in
computer model represents the state of zth neuron
layer of the real network.

In order to quantify the different LINNs regard-
ing their sharpening ability we introduce a measure
for it which has the form of entropy of a probability
distribution. It is well known that the steeper the
probability distribution is, the smaller is the value of

Wlk]
4

A
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its entropy. This property can be also used for the
measure of the sharpening ability in a lateral inhi-
bition network. Let V; be the normalized activation
vector of zth layer (zth iteration) defined as

Vz = (¢[1]z, ()5[2]1” e )¢[N]3) 3

where (k]
_ P
plk)e = N—x .
> elile
i=1
We introduce the quantity (in what follows we will
call it as iteration entropy)

N
E(z) == E ‘ﬁmz ln((ﬁ[i],)

and define the measure of sharpening ability (called
the rate of convergence) of a network in zth iteration
(layer) as the difference of E(z — 1) and E(z)

R(z)=E(zx—-1) - E(z).

The larger the R(z) is, the more the processed
curve becomes sharper in zth iteration. It can
also be expected that the sharper the output curve
(i.e. the curve in the output Lth layer) is, the lower
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Fig. 2. Weights in Kohonen’s network.
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value gets the corresponding E(L). If E(L) is zero,
then there is only one neuron firing in the output
network layer. Such network can be used as an ideal
maximum finder. We see that E(z) is in a sense a
measure of the amount of information on the maxi-
mum of the processed curve in a LINN. In what fol-
lows we investigate three actual models of LINN with
respect to their ability of sharpening the different
input curves.

3. Various Networks

3.1. Kohonen’s network

Let us first consider the network published by
Kohonen.® The neural connections of this network
as well as the corresponding weights are shown in
Fig. 1(b) and 2. Note that in this network

M=6+3.

The constants € and €2 in Fig. 2 had to be adjusted
according to the selected connectivity and necessary
stability during the iterations. Taking ¢[i]y as the
external input excitation of ith neuron, the activa-
tion function of zth layer has the form

M
afil. = ) (wlk] - pli — (M div 2)
k=1
+k~1lo)+efilo - O, (2

where O is the threshold of the neuron (we take all
the thresholds equal) selected experimentally accord-
ing to the signal-noise ratio.

PE's output

he threshold logic FE

uTt

é 1 PE's Activation value

uT = Upper threshold

Fig. 3. The output function of Kohonen’s network (fr).

PE's output

é 1 PE's Activation value

Fig. 4. The output function of Hamming network (fi).

The threshold logic function (Fig. 3) was used to
compute the output:

‘P[i]z = fT(a[i]x) .

3.2. Hamming network (maznet of
Hamming net’)

The anatomy of the network is shown in Fig. 1(b).

The weights are adjusted by the following way:

Vke{l,..., (M div 2)}U{(M div 2)+2,..., M} :
Wikl=e= _L

E=(Mdiv2)+1: M

Wikl=1.

The activation function is
M
afi] = Z(w[k] i — (M div 2) — 1+ k],—1) (3)
k=1

and the output value is determined by the identity
function (Fig. 4)

‘P[i]z = filali]z).

3.3. LINN-1

Our model (in what follows we denote it as LINN-
1) is based on the same equations as Hamming net
except a nonzero threshold (its aim is described
below) and the fact that a kind of normalisation was
performed after each iteration:

_— ‘P[i]z a
go[l],; - ma-X{<P[1]:c; ‘P[ley ceey ‘P[N]’"} ’ (3 )

This normalisation is due to ensuring the stability of
the signal processing during the iterations. That is




necessary because, e.g. in Hamming net, the signal
dies-out if there is no clear peak in the signal input.

4. Boundary Fixing

Finally, there is a problem connected with the
anatomy of the network due to the limited length
of the layers. The neurons on the boundary of a
layer have no neighbours and Eq. (1} cannot be ap-
plied here. We treated this problem by the following
way. The boundary neurons on one side are con-
nected with the boundary neurons on the other side
so that a layer forms a one-dimensional ring.

5. The Input Curves

We used the following input curves (pli]o) in the
experiments described below:
(1) Single-hump curves given by the formula
oli] = ——(SI—W(I, p, q are constants) .
1+ —
p

We have chosen the following values for the
variables ¢ and n: ¢ = 1; I = 50; p = 50 and
n = 2 (curve G — 2); n = 4 (curve G — 4);
n = 8 (curve G—8); n = 0.5 (curve G-SQRT)
and n = 0.25 (curve G-SQRT?2).
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(2) Sinusoid curves defined as

o= ams s (74 )]

We have taken the following values for the
exponent n: 2, 4, 8, 0.5 and 0.25. This
parameter determines the steepness of the
curve. For m which determines the number
of maximas, we have taken the values 1, 2
and 4.

(3) The step curve BREAK the form of which is
shown in Fig. 8.

6. Results

In what follows we present the relevant results of
the computer simulation of the various LINNs with
different input curves. In the first part we show the
actual form of the iterated curve of the network’s
output in a certain iteration. Then we present
the iteration entropy as a function of the number
of iterations z. Finally, we treat the measure of
sharpening ability (rate of convergence) in a certain
iteration R; = E(z) — E(z — 1) as a function of the
number of iterations.

The form of the iterated curves (the outputs of
the network) for the input curve G—2 in LINN-1 with
© = 0 is already deformed in the second iteration

DUnamics OfF the Network - cummulative araph
Iteration | Iteration 2
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The emergement of Wrong maxima during 1teration &

Fig. 5. Parameters: M = 5; © =0; ¢ = —0.2; N = 100. Curve: G — 2.
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Iteration: il

///

Dgnamics of the network - cummulative graph

Fig. 6. Parameters: M = 5; © =0.1; e = ~0.2; N = 100. Curve: G — 2.

Iteration:d

Dynamics for connectivity 25 X - cummulative araph

Iteration:3

Dynamics for connectivity B X - cummulative araph

Fig. 7. Parameters: M = 100; © = 0; € = —0.01; N = 100. Curve: sinusoid type with n =m = 1.

(Fig. 5) whereas those in LINN-1 with © = 0.1 are
deformed first in the 10th iteration (Fig. 6). Here we
see also that the individual iteration curves have the
sharpened form of the input curve. The dying-out of
the iterated curves in Hamming net is demonstrated
in Fig. 7. The maximum of the iterated curves
becomes smaller quickly during the iteration process.
We see that the dying-out of the iterated curves is
larger at greater connectivity. The deformation of
the iterated curves for the input curve “BREAK”
and the sinusoid curve in Kohonen’s net is shown
in Figs. 8 and 9. Whereas the curve “BREAK” is
relatively more deformed, sinusoid curves are only
sharpened but not deformed. Here we can conclude

that the deformation of iterated curves is smaller,
the smoother the input curves are.

Next we quantitatively evaluate the sharpening
procedure in various LINNs by means of the it-
eration entropy E(z) and the rate of convergence
R, = E(z) — E(z — 1). We study both quanti-
ties as a function of the number of iterations. The
function E = f(z) tells us how the absolute value
of E decreases with the number of iterations and
R = f(z) tells us how effective it is in each individual
iteration. If E(z) gets zero then only one neuron is
active and the sharpening procedure is finished. This
can be seen, e.g. in Fig. 10 where the dependence of
E on z with input curve G-SQRT and for different
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ohonen's LI_Net!
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Fig. 8. Parameters: M = 93; © = 0.1; £ = 15; £2 = 0.025; N = 100. Curve: BREAK.
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Fig. 9. Parameters: © = 0.1; N = 100. Top: ¢ = 15; €2 = 0.025; M = 93. Bottom: ¢ = 1; €2 = 0.25; M =9,
Curve: Sinusoid type, n =m = 2.
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Parameters: Theta=0.02; MaxPE=100

Fig. 10. E as a function of the number of iterations for LINN-1.
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LINN-1

Input: 1_1_0.SIN
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lteration

5% —+ Conn.

75 % —%— Conn.

—— Conn.

8- Conn.

25 % —%= Conn.= 50 %
100 %

Parameters: Theta=0.02; MaxPE=100

Fig. 11. E as a function of the number of iterations for LINN-1 with a sinusoid input signal.
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HAMMING
Input: G_SQRT
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100 %

®

Parameters: Theta=0; MaxPE=100

Fig. 12. E as a function of the number of iterations for Hamming net.
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KOHONEN
Input: G_SQRT
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'],5 -
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lteration
—— Conn.=93% (E2=0.025) —+— Conn.=9% (E2-0.25)

Param.:Theta=0.1, MaxPE=100

Fig. 13. E as a function of the number of iterations for Kohonen’s net.
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LINN-1
Input: G_SQRT

© ~o® 0
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lteration
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Parameters: Theta=0.02; MaxPE=100

. Fig. 14. R as a function of the number of iterations for LINN-1.
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LINN-1
Input: 1_1_0.SIN

10 15 20 25 30 35
teration

—B— Conn.= 75 % —— Conn.= 100 %

Parameters: Theta=0.02; MaxPE=100

40

Fig. 15. R as a function of the number of iterations for LINN-1 with a sinusoid input signal.
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Fig. 16. R as a function of the number of iterations for Hamming net.
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values of connectivity is depicted. We conclude
that the larger the connectivity is, the longer is the
sharpening procedure. We see also in Fig. 11, where
E is shown as a function of the number of iterations
for the input curve 1-1-0.SIN, that here, except for
connectivity 5%, no values of E are zero even after
the 30th iteration. There is the similar situation
also in Hamming net (Fig. 12) where E gets to the
zero level only for connectivity 50%. E = f(z) for
Kohonen net with input curve G-SQRT is shown in
Fig. 13. We see that the decrease of E during the
iteration procedure is very slow for connectivity 93%
and almost constant for connectivity 9%.

The magnitude of the sharpening in each individ-
ual iteration can be best demonstrated by means of
the rate of convergence R(z).

In Figs. 14, 15 and 16 we see that the rate of
convergence as a function of the number of iterations
exhibits the following features: in interval 0-5 iter-
ations it is considerably decreasing and in interval
5-25 it is practically constant. That indicates that
the first five iterations are the most effective with
respect to the sharpening ability of the individual
types of LINNs. The connectivity as a parameter
does not play a very important role in sharpening
ability in the interval of 5-30 iterations. The input
curve seems to be more important than the connec-
tivity. We see it by the comparison of Figs. 14 and
15. The rate of convergence for the input curve G-
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SQRT is approximately twice as large as that for the
curve 1-1-0.SIN in the interval of 5-30 iterations.
Hamming net has the typical form of the function
R = f(z) as well. The largest value of the rate
of convergence has the LINN-1 for the input curve

G-SQRT.

7. Discussion

Kohonen’s network is the only network that can as-
sure stability and error-free iteration simultaneously.
Possibly it can serve as a mechanism for preserving
the potential maps over natural neural networks.
The slight modifications of the iteration curves in
this network are aimed either at contour enhance-
ment (those with low connectivity, Fig. 17) or at
smoothing of the input (high connectivity, Fig. 8).
This net can also act like a filter emphasizing some
characteristics of the input signal.

LINN-1 is a network where a superviser has
to be present to choose the maximum for the
normalisation.

A shortcoming of the Hamming net is the rapid
fading-out of activity especially with input curves
without clear peak. This can be prevented either
through changes in weights (the excitatory weight
selected > 1) or through adding the input to the
iteration formulas (see above). But then we are

Kohonen's LI_Net
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Fig. 17. Parameters: M =9, © =0.1; ¢ = 1; €2 = 0.25; N = 100. Curve: BREAK.
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confronted with the wrong-maxima problem. So
these networks (due to the way how wrong max-
ima develop ) may not be used as iterative net-
works but they fit as networks for just one passing
where contour-enhancement is necessary. Where
a maximum-finder is asked (the connectivity 100%)
we may use them even in the iterative mode; here
no wrong maxima evolve.

Let us finally draw some simple implications for
the real neural phenomena. Due to the fact that only
the first 5 iterations are the most effective for sharp-
ening, it does not seem necessary to have iterative
LINNs in the architecture of CNS. This is in accord
with the so-called 100 step program constraint?
which arose due to the fact that neurons operate in
the time-scale of milliseconds and so neural processes
that take 1 second can involve only a hundred or
so steps.®
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