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A B S T R A C T   

The neuronal signatures of sensory and cognitive load provide access to brain activities related to complex 
listening situations. Sensory and cognitive loads are typically reflected in measures like response time (RT) and 
event-related potentials (ERPs) components. It’s, however, strenuous to distinguish the underlying brain pro
cesses solely from these measures. In this study, along with RT- and ERP-analysis, we performed time-frequency 
analysis and source localization of oscillatory activity in participants performing two different auditory tasks 
with varying degrees of complexity and related them to sensory and cognitive load. We studied neuronal 
oscillatory activity in both periods before the behavioral response (pre-response) and after it (post-response). 
Robust oscillatory activities were found in both periods and were differentially affected by sensory and cognitive 
load. Oscillatory activity under sensory load was characterized by decrease in pre-response (early) theta activity 
and increased alpha activity. Oscillatory activity under cognitive load was characterized by increased theta 
activity, mainly in post-response (late) time. Furthermore, source localization revealed specific brain regions 
responsible for processing these loads, such as temporal and frontal lobe, cingulate cortex and precuneus. The 
results provide evidence that in complex listening situations, the brain processes sensory and cognitive loads 
differently. These neural processes have specific oscillatory signatures and are long lasting, extending beyond the 
behavioral response.   

1. Introduction 

The ability to comprehend spoken language is a fundamental aspect 
of communication. Listeners are required to incorporate various oper
ations such as parsing the auditory scene, keeping track of who said 
what, selectively attending to the target speaker, suppressing processing 
of irrelevant information, extracting meaning and storing it in memory, 
and utilizing personal knowledge to formulate appropriate responses 
(Schneider et al., 2010; Schneider, 2011). Multiple neural processes take 
place during these operations, which occur rapidly, both sequentially 
and in parallel (Henkin et al., 2002; Hillyard and Kutas, 1983). 

Everyday speech interactions often occur in challenging, yet com
mon, listening conditions that may typically include sensory and/or 
cognitive loads. Sensory load refers to degradation of the acoustic input 

which under experimental conditions is frequently induced by present
ing speech in background noise, either by broadband or white noise (i.e., 
“energetic masking”) or by competing speech maskers (i.e., “informa
tional masking”) (Kaplan-Neeman et al., 2006; Cooke et al., 2008; 
Getzmann and Falkenstein, 2011; Strauß et al., 2014; Getzmann et al., 
2015). There is substantial evidence of decreased speech understanding 
in background noise, especially in tasks involving informational mask
ing (Sperry et al., 1997; Rajan and Cainer, 2008; Decruy et al., 2019). 

Differently, cognitive load refers to additional demands imposed on 
the listener’s attention or memory resources during speech processing 
(Mattys et al., 2012). An example of such a task is the well-known Stroop 
task (Stroop, 1935). The task challenges executive functions such as 
selective attention, inhibition, and conflict resolution (MacLeod, 1992; 
Kestens et al., 2021). In its auditory version, the task may include words 
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with two dimensions: a physical and a semantic dimension (Lew et al., 
1997). The meaning of the word can be either congruent (e.g., the word 
“low” in low pitch) or incongruent (e.g., the word “low” in high pitch) 
(Sharma et al., 2019). The listener is required to selectively attend to a 
targeted dimension (e.g., pitch) while ignoring the irrelevant dimension 
(e.g., word meaning). Traditionally, a robust Stroop effect is demon
strated by prolonged response (or reaction) time and reduced perfor
mance accuracy to incongruent versus congruent stimuli, indicating 
failure of selective attention due to processing of conflicting information 
(Green and Barber, 1981; Morgan and Brandt, 1989; Gregg and Purdy, 
2007). 

The effect of sensory or cognitive loads on speech processing has also 
been studied by means of brain-based measures, such as electroen
cephalogram (EEG) recordings (Martin et al., 2008; Getzmann and 
Falkenstein, 2011; McCullagh and Shinn, 2013; Getzmann et al., 2015; 
Dimitrijevic et al., 2017; McHaney et al., 2021). Regardless of whether 
listeners process sensory information or perform high-demanding 
cognitive tasks, the activated brain regions exhibit measurable elec
trical activity, illuminating the underlying neural mechanisms. This 
electrical activity recorded from multiple-site scalp electrodes can be 
analyzed in the time (event-related potentials (ERPs); e.g., (Beres, 2017; 
Martin et al., 2008; Pratt, 2011)) and/or frequency domain (time-
frequency representation (TFR); (Buzsaki, 2006; Cohen, 2014)). While 
the time and frequency domains represent different dimensions of the 
same signal, the main advantage of the TFR is that at a given time-point, 
the EEG data are decomposed into multiple oscillatory bands. This al
lows to identify and differentiate parallel brain processes. Furthermore, 
non-phase locked EEG activity is not averaged out even if not 
phase-locked to stimulus onset or to the listeners reaction (behavior 
response, i.e., button press; (Kalcher and Pfurtscheller, 1995; Herrmann 
et al., 2004; Siegel et al., 2012). Separation of phase-locked (evoked 
power, Lakatos et al., 2009) and not phased-locked (induced power, 
Tallon-Baudry et al., 1996; David et al., 2006) provides a tool for sep
aration of sensory responses and corticocortical interactions taking 
place at the same time (David et al., 2006; Donner and Siegel, 2011; 
Chen et al., 2012; Yusuf et al., 2017). 

Studies incorporating brain oscillatory activity to investigate load 
effects in the auditory modality are limited, and often focus on the effect 
of one specific load (sensory/cognitive). Published results vary and 
depend on the utilized task, eliciting stimuli, and type of data analysis 
methods. For example, the effect of increased sensory load, imposed by 
competing/degraded speech, resulted in increased or decreased alpha 
power (Obleser and Weisz, 2012; Wöstmann et al., 2015; Dimitrijevic 
et al., 2017; Wisniewski et al., 2021). The effect of increased cognitive 
load on neural oscillations has been studied using a variety of tasks 
(Wilsch et al., 2015; Wilsch and Obleser, 2016; Hjortkjær et al., 2020; 
Beldzik et al., 2022), however, only few studies utilized the auditory 
Stroop task (Oehrn et al., 2014; van de Nieuwenhuijzen et al., 2016; 
Sharma et al., 2021). These studies suggested frontal theta power as an 
index of conflict processing, showing enhancement to incongruent vs 
congruent stimuli, even when behavioral manifestations were not 
observed (Sharma et al., 2021). Additionally, during conflict processing 
an interplay between theta and gamma oscillations in prefrontal brain 
regions was evident (Oehrn et al., 2014). 

The current study was set to evaluate the effect of both loads on TFRs 
in a within-subject design. Our working hypothesis was that sensory and 
cognitive loads will have different oscillatory signatures. Our assump
tions relate to the theory of dual control (proactive and reactive) 
(Braver, 2012; Lieder and Iwama, 2021). Specifically, given that sensory 
load affects stimulus processing, it may influence reactive control and 
manifest in the neural activity before the behavioral response, presum
ably in alpha band activity (Obleser and Weisz, 2012; Wöstmann et al., 
2017). While reactive control rests on sensory processing, cognitive load 
may rely on proactive control in order to maintain the task goals in 
working memory and enable reaction to the following stimulus based on 
a pre-prepared motor program. This proactivity may deplete cognitive 

resources for action monitoring required to update and execute the 
motor program for the correct behavioral response. Therefore, we hy
pothesized that the cognitive load effect will take place mainly after the 
response time. We further expected, based on previous studies, that 
cognitive load will manifest in theta oscillations mainly in prefrontal 
region (Bastiaansen and Hagoort, 2003; Cavanagh et al., 2012; Albouy 
et al., 2017; Nowak et al., 2021). Finally, we hypothesized that frontal 
theta would manifest as neural correlates of conflict processing during 
Stroop task (Kerns et al., 2004; Hanslmayr et al., 2008; Ergen et al., 
2014). 

For this reason, we set up a paradigm with extended recording time 
after the behavioral response and separately processed brain signal 
before (pre-response) and after the response (post-response). Further
more, we analyzed all data with respect to the stimulus (stimulus time- 
locked) and to the response (response time-locked). The underlying 
concept was to differentiate the stimulus-related and the response- 
related oscillatory activities allowing to distinguish between sensory 
processing and preparation/execution of the motor response. The main 
goal of the present study was, therefore, to identify the neural signatures 
of sensory and cognitive loads. Findings may potentially serve as a 
baseline for understanding age-related detrimental changes in speech 
processing in older adults, especially in challenging listening conditions. 

2. Materials and methods 

2.1. Participants and procedure 

Twenty young adult listeners 21.9–28.7 years old (M = 24.9, SD =
1.8; 10 female) participated in this study. The sample size for this study 
was based on power analysis according to the effect size reported in 
previous studies on ERPs (Henkin et al., 2010, 2014). All participants in 
this study: 1) Reported no history of psychiatric, cognitive illness, brain 
damage, ear pathology, or any central nervous system disorders; 2) 
Exhibited right-handedness based on the translated Edinburgh In
ventory for Handedness (Oldfield, 1971); 3) Used Hebrew as their 
dominant language; 4) Had at least 12 years of formal education (M =
13.4, SD = 1.5). Participants underwent hearing evaluation, including 
air- and bone-conduction thresholds evaluation in octave frequencies 
between 250 and 8000 Hz, determination of speech reception thresholds 
(SRT) and word recognition scores (Hebrew PB monosyllabic words). All 
participants met the criteria of normal hearing at octave frequencies 
between 250 and 8000 Hz and demonstrated air-conduction thresholds 
≤ 15 dB HL. The mean interaural threshold difference did not exceed 5 
dB HL at each frequency, and no clinically significant differences were 
detected between air- and bone-conduction thresholds (<15 dB HL). 
Pure tone average (PTA4; average threshold for, 0.5, 1, 2 and 4 kHz in 
dBHL) were comparable for right and left ears (right: M = 5.56, SD =
2.64, left: M = 5.19, SD = 3.17, t(19) = 0.609, p = 0.492, Cohen’s d =
0.127). Word recognition scores (WRS) were within the normal range 
(>88 %) in both ears for all participants. All participants exhibited a 
score within the normal range in the forward and backward digit span 
subtest of the Wechsler intelligence scale (M = 11.3, SD = 3.23) 
(Wechsler, 1997). Five additional participants were excluded from the 
analysis due to: 1) extremely prolonged response time (RT) values (>3 
standard deviations longer compared to the mean group values; one 
participant); 2) ERPs recordings significantly contaminated by excessive 
eye movements and/or myogenic artifacts (four participants). Exclusion 
of participants was decided only after failure to produce clear wave
forms by means of disabling contaminated records and/or utilization of 
an eye movement correction algorithm. Participants were recruited 
through personal acquaintance or via internet and social networks. They 
provided written informed consent and received reimbursement. The 
study was approved by the Institutional Review Board of Ethics at Tel 
Aviv University. 
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2.2. Tasks, conditions and stimuli 

The experiment consisted of two tasks, a vowel identification task 
and an auditory Stroop task, presented under two listening conditions: 
quiet and background noise. The Stroop task included two types of 
stimuli: congruent and incongruent (details below). In total, there were 
four task-condition combinations: 1) Vowel identification in quiet, 2) 
Vowel identification in noise, 3) Stroop task in quiet, 4) Stroop task in 
noise. The analysis in this study focused the following task-condition- 
stimuli combinations: 1) Vowel identification in quiet, 2) Vowel iden
tification in noise, 3) Stroop task congruent stimuli in quiet (i.e., Stroop 
congruent), and 4) Stroop task incongruent stimuli in quiet (Stroop 
incongruent). 

The vowel identification task included the vowels /a/ and /i/ pro
duced by native Hebrew female speaker. The participants were 
instructed to classify each vowel (/a/ or /i/) with both hands by pressing 
one of two possible buttons on a response box (left hand operating the 
left button or right hand operating the right button). Stimuli were 
digitally recorded at 44.1 kHz sampling rate and 16-bit quantization 
using Goldwave 6.4 software. From a large sample of naturally produced 
stimuli, the final vowels set was selected. To minimize potential iden
tification cues related to a specific utterance, four different versions of 
/a/ as well as four different versions of /i/ were chosen, creating a final 
set of eight vowels. The vowels were shortened to a duration of 230 ms 
by windowing the vowel offset, and were subjected to fade in and fade 
out procedures. The mean fundamental frequency for the four /a/ ver
sions was 206–210 Hz, and for the four /i/ versions 230–235 Hz. In the 
background noise condition, each one of the stimuli were embedded in a 
different noise segment in order to avoid identification cues related to 
specific stimulus-noise combination. The background noise consisted of 
four talker babble noise (two males/two females) and was presented 
continuously throughout the task at an SNR level of +3 dB. Using RMS 
normalization procedure (MATLAB, Mathworks Inc.) the determined 
SNR was kept constant for each vowel presented in noise. 

In the auditory Stroop task, participants were instructed to classify 
the speaker’s gender (male or female) by pressing one of two possible 
buttons (left or right). The auditory Stroop tasks included two types of 
stimuli that were previously used (Henkin et al., 2010, 2014): 1) 
Congruent stimuli – the Hebrew two-syllable words /aba/ (father) and 
/ima/ (mother) produced by native male and female speakers, respec
tively; 2) Incongruent stimuli – the word /aba/ produced by a female 
speaker and the word /ima/ produced by a male speaker. The stimuli 
were digitally recorded at 44.1 kHz sampling rate and 16-bit quantiza
tion using Sound Forge 4.5 software. From a large sample of naturally 
produced stimuli, the final set of words was selected and shortened to a 
duration of 374 ms by windowing the final vowel offset. The mean 
fundamental frequency of the male speaker was 92 Hz (/aba/) and 100 
Hz (/ima/), and for the female speaker 180 Hz (/aba/) and 190 Hz 
(/ima/). In what follows, the congruent Stroop stimuli will be denoted as 
Stroop congruent and the incongruent stimuli as Stroop incongruent. 

All stimulus amplitudes in both tasks (vowel identification and 
auditory Stroop task) were calibrated to the same level using overall 
root-mean-square (RMS) normalization. After electrode application, 
participants were seated in a comfortable armchair in a sound-treated 
room. They were instructed to fixate their eyes on a colored circle 
located on the wall in front and to avoid excessive eye movements while 
listening to the stimuli and responding. Stimuli were presented every 
3000 ms. A total of 200 stimuli were presented in every condition, each 
lasting approximately 10–12 min. Each of the tasks consisted of 200 
stimuli, divided into two blocks of 100 stimuli each. The order of the 
tasks, as well as the order of the blocks within each task, was random
ized. In addition, within each block, stimuli were randomized differently 
to ensure that no more than four consecutive presentations of the same 
vowel or two consecutive presentations of the same word (i.e., same 
combination of word and speaker’s gender) occurred. Stimuli were 
presented via a loudspeaker located at azimuth zero at a distance of 1 m 

from the participant’s head in both tasks. The presentation levels were 
adjusted individually to 30 dB HL above PTA4. The side of the response 
buttons was counterbalanced across participants in both tasks. A short 
practice included 12 stimuli that were presented before each condition. 
Short intermissions were provided between blocks and conditions. 

2.3. Data acquisition 

Continuous EEG data was recorded from 64 electrode sites arranged 
according to the international 10/10 system (Jurcak et al., 2007) using 
an EEG cap connected to a multichannel amplifier (System Plus Evolu
tion software, Micromed S.p.A). Potentials were amplified from the EEG 
(100,000 gain) and electroculogram (EOG) (20,000 gain) channels. The 
reference and ground electrodes were placed on the chin and the right 
mastoid, respectively. Eye movements were monitored by an EOG, 
recorded by means of electrodes placed above and below the right eye. 
The impedance measured for each electrode was kept below 10 kOhm. 

2.4. Data analysis 

The EEG data processing and analysis for the TFR and for the ERPs 
analysis were performed offline using the FieldTrip toolbox (Oostenveld 
et al., 2011) and custom-made MATLAB scripts (Mathworks Inc.) 
(MATLAB scripts are available at: https://github.com/brllant). The raw 
EEG data was first imported in the Brainstorm software (Tadel et al., 
2011) and converted (*.trc to *.eeg, *.vhdr and *.vmrk) for further 
preprocessing using the FieldTrip toolbox. Out of the 64 electrodes used 
for recording, 58 were analyzed. The electrodes used in the analysis 
were: AF3, AF4, Fz, F1, F2, F3, F4, F5, F6, F7, F8, FCz, FC1, FC2, FC3, 
FC4, FC5, FC6, Fpz, Fp1, Fp2, Cz, C1, C2, C3, C4, C5, C6, CPz, CP1, CP2, 
CP3, CP4, CP5, CP6, T3, T4, T5, T6, TP7, TP8, Pz, P1, P2, P3, P4, P5, P6, 
POz, PO1, PO2, PO3, PO4, PO7, PO8, Oz, O1, O2. Six electrodes (a1, a2, 
VEOR, VEOL, EB and el064) were not analyzed since they did not record 
brain activity of interest. The time window between the stimulus onset 
and the mean response time (mean RT, or mean reaction time) will be 
designated as pre-response period and the time window after the mean 
response time will be designated as post-response period. Response 
times were computed from the same trials that were also used for the 
EEG data analysis, i.e., all trials that were left after artifact removal. 
Only trials with correct responses were analyzed. The mean RTs for all 
task-condition-stimuli combinations were plotted with a custom MAT
LAB script using function from MATLAB Central File Exchange: ‘al_go
odplot’ (Legouhy, 2023) (Fig. 1A). 

2.4.1. Preprocessing 
The preprocessing procedures were high-pass filtering, segmentation 

and artifact removal. The imported EEG files were first high-pass filtered 
at 0.1 Hz. The data were then segmented into 3000 ms epochs and 
triggered by the stimulus onset (0s: stimulus onset, − 1000 ms pre- 
stimulus, and 2000 ms post-stimulus). For artifact removal, indepen
dent component analysis (ICA) weight matrix was calculated with 1Hz- 
high-pass filtered data and applied to the 0.1 Hz high-pass filtered data 
to improve the SNR and classification accuracy (Winkler et al., 2015), 
yet avoid the lower frequency attenuation resulted from the 1Hz-high-
pass filter (Rousselet, 2012). Independent components representing eye 
blinks, horizontal eye movements and technical artifacts were removed 
from the EEG data. Record by record inspection allowed to identify and 
manually remove non-stereotyped artifacts. Additionally, the first epoch 
in each experiment block, and epochs with errors in responses (incorrect 
respond or no respond) were removed. There were on average 112 trials 
per task-condition-combination per participants used in the data ana
lyses after preprocessing. For the Stroop task, the epochs were then 
separated into congruent and incongruent trials. 

2.4.2. Time-Domain analysis 
The preprocessed trials in each task-condition-combination were 
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pooled according to the ROI from these following four channels: 1) 
Frontal: F1, F2, Fz and FCz; 2) Central: C1, C2, Cz and CPz; 3) Parietal: 
P1, P2, Pz and POz; 4) Occipital: O1, O2, Oz and POz; 5) Temporal Left: 
T3, T5, TP7 and C5; and 6) Temporal Right: T4, T6, TP8 and C6 (for the 
temporal ROIs data see Supplementary Fig. 6). The trials in each ROI 
were baseline (0 – 200 ms) corrected and then averaged to obtain the 
event-related potentials (ERPs) N1 and P3 of the task-condition- 
combination in the ROI. For the ERPs in Fig. 1B-E, the previously 0.1 
Hz high-pass filtered data were additionally filtered with 30 Hz low-pass 
filter. Topographical plots were generated with Fieldtrip function 
‘ft_topoplotER’ using the following time window for N1: [2 ms – 120 ms] 
(Supplementary Fig. 4B) and P3: [200 ms – 400 ms] (Supplementary 
Fig. 4D). 

2.4.3. Time-Frequency analysis 
For every trial in each task-condition-combination, complex TFR was 

calculated using complex Wavelet transformation on the preprocessed 
data from each channel. For the time-frequency analysis, the continuous 
data were segmented into 6000 ms epochs, to avoid the edge artifacts 
resulting from using Wavelet convolution. The decomposition to 6000 
ms epochs (− 2500 to 3500 ms) into time-frequency space was per
formed using Morlet Wavelet convolution with the width of 6 cycles in 
20 ms steps. Frequencies from 1 to 128 Hz in 1 Hz linear steps were 
analyzed. The complex TFRs for each trial were averaged throughout all 
trials. The total power was normalized to the baseline period (− 800 to 
− 200 ms) (Cohen, 2014a). The oscillatory activity was defined as syn
chronization, when its power increased relative to baseline, and 
desynchronization, when its power decreased relative to baseline. The 
TFRs were plotted using MATLAB function: ‘contourf’ (MATLAB, 
Mathworks Inc.) for the time-window of interest (3000 ms, − 1000 to 
2000 ms) logarithmically and covered the frequency range from 2 to 128 
Hz (divided into frequency band: delta, theta, alpha, beta and gamma 
(Table 1)), and all available time points (− 1000 to 2000 ms). 

Complex TFRs of the trials from the four following channels were 
pooled in a ROI before later averaged throughout all trials: 1) Frontal: 
F1, F2, Fz and FCz; 2) Central: C1, C2, Cz and CPz; 3) Parietal: P1, P2, Pz 
and POz; 4) Occipital: O1, O2, Oz and POz; 5) Temporal Left: T3, T5, TP7 
and C5; and 6) Temporal Right: T4, T6, TP8 and C6. Because the central 
ROIs- and temporal ROIs TFRs turned out to be similar, the temporal 
ROIs data were included in the supplementary material only (Supple
mentary Fig. 6). For grand mean TFR (i.e., stimulus time-locked TFR, 
Figs. 2, 7A, C and 8A, C), complex TFRs for all participants in each ROI 
were pooled together. For each stimulus time-locked TFR (Fig. 2) and 
response time-locked TFR (Supplementary Fig. 1), cluster-based per
mutation test was performed to define statistically significant oscillatory 
activity relative to the baseline and plotted as black contours on the 
respective TFR (see 2.4.5. Statistical Tests). 

For the difference TFRs between task-condition-stimuli combina
tions (Fig. 4I-L, 5I-L, 6I-L and Supplementary Fig. 5I-L), the stimulus 
time-locked TFRs from one task/condition/stimulus (Fig. 4A-D, 5A-D, 
6A-D and Supplementary Fig. 5A-D) were subtracted from stimulus 
time-locked TFRs from another task/condition/stimulus (Fig. 4E-H, 5E- 
H, 6E-H and Supplementary Fig. 5E-H). Cluster based permutation test 
was performed to define statistically significant oscillatory activity dif
ferences between the two task-condition-stimuli combinations (e.g., 
vowel identification in quiet and in noise) and plotted as black contours 
on the respective difference-TFRs (see 2.4.5. Statistical Tests). The 0.1 Hz 
high-pass grand mean averages were plotted on the respective TFRs as 
blue traces (Fig. 4A-H, 5A-H, 6A-H, Supplementary Fig. 5A-H and Sup
plementary Fig. 7). 

Topographical plots were generated with Fieldtrip function ‘ft_to
poplotTFR’ using the following time-frequency window for delta-theta: 
[1 – 8 Hz, 0 ms – 600 ms], alpha: [8 – 12 Hz, 200 – 600 ms] and beta: [13 
– 30 Hz, 800 – 1600 ms] (Supplementary Fig. 4G). 

2.4.4. Response time-locked TFR 
To evaluate the response-related activity, the time-domain signals in 

each trial were triggered by the RT (Fig. 3). The raw EEG data were 
preprocessed and analyzed in the same manner as described previously. 
The only differences in analysis pipeline were: 1) In the segmentation 
stage, the data were then segmented into 3000 ms epochs and triggered 
not by the stimulus onset, but by the RT (i.e., behavioral reaction onset) 
(0s: RT or reaction onset, − 1500 ms pre-response, and 1500 ms post- 
response), 2) The baseline-period was − 1300 to − 700 ms pre-response 
(instead of − 800 to − 200 ms pre-stimulus). The same trials as the 
stimulus-triggered were used for the response-triggered analysis. The 
0.1 Hz high-pass grand mean averages were plotted on the respective 
TFRs as blue traces. For the difference-TFRs between stimulus time- 
locked- and response time-locked TFRs (Supplementary Fig. 2), the 
response time-locked TFRs were first aligned so that the mean stimulus 
onset overlaid the 0 in the stimulus time-locked TFRs (i.e., the mean RT 
in the stimulus time-locked data overlaid the 0 in the response time- 
locked TFRs). The aligned response time-locked TFRs were subtracted 
from stimulus time-locked TFRs. 

2.4.5. Statistical tests 
The time-frequency data were statistically analyzed using a non- 

parametric cluster-based permutation approach using Fieldtrip toolbox 
(Maris and Oostenveld, 2007). For this, independent samples t-tests (1) 
between activation- (− 200 to 2000 ms) vs. baseline-period (− 200 
to-800 ms) and (2) task-condition-stimuli combinations (e.g., vowel 
identification in quiet and in noise) were calculated for each sample 
point. Significant values (alpha < 0.05) were clustered based on their 
adjacency in time, space and frequency. The critical p-value for each 
cluster was calculated using the Monte Carlo method with 500 random 
permutations. If the summed t-value of the observed data cluster was 
higher than 95 % of the random partitions, then the cluster was 
considered to represent a significant difference between the two 
compared groups. For comparison between task-condition combinations 
only the activation-periods were entered into the statistical test. For 
comparison between activation- vs. baseline-period, because the acti
vation period was longer than the baseline period and the statistical test 
requires the same data length, the activation period were divided into 
four sub-periods (− 200 ms until 400 ms, 300 ms until 900 ms, 800 ms 
until 1400 ms, and 1400 until 2000 ms for stimulus time-locked data; 
− 700 ms until 100 ms, − 200 ms until 400 ms, 300 ms until 900 ms, and 
900 until 1500 ms for response time-locked data) with each having the 
same data length as the baseline period. Each data from each sub-period 
were then statistically tested against the baseline-period. The union of 
the resulted significant clusters from each sub-periods was considered to 
represent a significant difference between the activation- and the 
baseline-period. The RTs were statistically analyzed using paired t-tests. 

2.4.6. Source localization 
The forward model was computed using the 3D anatomical dataset 

(scalp, skull and brain) from the anatomic MRI scans in the Fieldtrip 
repository. The volume conduction model was calculated with the 
boundary element method (Oostendorp and Van Oosterom, 1991; Fuchs 
et al., 2002) using OpenMEEG method. This method ensured a more 
realistic volume conduction model needed for localizing the source of 
EEG data (Hamalainen and Sarvas, 1987; Westner et al., 2022). The 
positions of 58 analyzed electrodes were aligned to 3D anatomical data. 
To create a source model, volumetric grids inside the 3D brain data were 
created with one source per cm3. The source model, along with the 
volume conduction model and electrodes’ positions were then used to 
compute the forward model. 

For the inverse modeling, a dynamic imaging of coherent sources 
(DICS) beamformer was used to estimate the source power of band- 
limited activity in the frequency domain (Gross et al., 2001). For the 
source localization in the time domain (Supplementary Fig. 4C, E) lin
early constrained minimum variance (LCMV) beamformer (Van Veen 
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et al., 1997) was used (for more details of beamformers see (Westner 
et al., 2022)). The source analysis was computed and plotted for acti
vation period relative to the baseline period. For N1 the activation 
period was defined from 2 ms until 120 ms, and its baseline period was 
from − 2 ms until − 120 ms (Supplementary Fig. 4C). For P3 the acti
vation period was from 200 ms until 400 ms, and the baseline was from 
− 2 ms until − 220 ms (Supplementary Fig. 4E). Only activities above 0.7 
threshold were plotted. 

For frequency domain source analysis preprocessing, time-domain 
data of each condition/task for each participant was re-referenced to 
the common average reference and pooled together from all partici
pants. For each condition/task, only the sources of those frequency 
bands were identified, which were significant in the total-power-TFR. 
For the analyzed frequency band, an activation period was defined 
based on the total-power-TFR. For each activation period, a baseline 
period with the same length was defined, starting at − 200 ms. 

The baseline- and activation periods for the analyzed frequency 
bands are summarized in Table 1. 

Once the time-domain data were segmented according to the base
line- or activation periods and also frequency of interest, a multitaper 
frequency transformation was conducted to obtain the power and cross 
spectral density matrix. A common spatial filter based on both periods 
(baseline- and activation period) with the regularization parameter 
(lambda) set to 10 % was calculated. The application of common spatial 
filter based on both periods was used to prevent the filter from being 
biased towards one period. The filter was subsequently applied sepa
rately to each period, providing the source power estimates. The 
contrast of the source power estimates of both periods was then calcu
lated by subtracting source power estimate of the baseline period from 
the source power estimate of the activation period, then divided by the 
source power estimate of the baseline period. For the time-frequency 
window, which in the grand mean TFR showed significant synchroni
zation (power increase relative to baseline), negative source power es
timate values were masked, while in the time-frequency window, where 
desynchronization (power decrease relative to baseline) was observed in 
the grand mean TFR, the positive source power estimates values were 
masked. This step is commonly done during the plotting step of the 
source reconstruction result using plotting command in Fieldtrip (Oos
tenveld et al., 2011) by specifying ‘rampup’ (only plot positive value) or 
‘rampdown’ (only plot negative value) as parameter. The contrast was 
then normalized to the maximum (for synchronization) or minimum (for 
desynchronization) and plotted on the 3D brain surface data (Fig. 7B, D, 
and 8B, D). The description of anatomical labels of the activated brain 
regions found in the result section was determined manually based on 
the 2D-MRI data plotted on three anatomical planes: sagittal-, frontal- 
and transversal plane. The Brainnetome Atlas (Fan et al., 2016) was used 
to relate the coordinates to the known anatomical structures (Tables 3–6 
and Supplemetary Tables 1–4). 

2.4.7. Evoked- and Induced power 
The stimulus time-locked TFRs (total-power-TFRs) can be further 

separated into induced- and evoked-power-TFRs. To compute the 

induced-power-TFR (Supplementary Fig. 3B, D, F, and H) the time- 
domain trial average (i.e., the event-related potential (ERP)) was sub
tracted from each trial before TFR computation. The resulting complex 
TFRs for each trial were subsequently averaged throughout all trials to 
obtain the induced-power-TFR. The induced-power-TFR was normalized 
in the same manner as the total-power-TFR (baseline period: − 800 to 
− 200 ms). Finally, the evoked-power-TFR (Supplementary Fig. 3A, C, E, 
and G) was obtained by subtracting the baseline-normalized induced- 
power TFR from the baseline-normalized-total-power-TFR (Cohen, 
2014a). The 0.1 Hz high-pass filtered ERPs were plotted on the 
evoked-power TFR as blue traces (Supplementary Fig. 3A, C, E and G). 

3. Results 

3.1. Mean RTs and ERPs 

The mean behavioral RTs (response- or reaction times) (Fig. 1A) in 
the vowel identification task in quiet, in noise, Stroop congruent and 
Stroop incongruent are presented in Table 2. RT increased with 
increasing task complexity. In the vowel identification task, RT in the 
noise condition was significantly longer than in the quiet condition 
(two-tailed paired t-test, t(19) = − 8.7, p < 0.001). A significant effect of 
congruency indicated longer RT to incongruent compared to congruent 
stimuli (two-tailed paired t-test, t(19) = − 4.2, p < 0.001). The mean RT 
in the vowel identification in quiet was similar to that in Stroop 
congruent (two-tailed paired t-test, t(19) = − 1.1, p = 0.2792) and was 
significantly shorter compared to Stroop incongruent (two-tailed paired 
t-test, t(19) = − 2.9, p < 0.001). All participants in all task-condition- 
stimulus combinations achieved performance scores higher than 95 %. 

The ERP components N1 and P3 (Fig. 1B-E, shown for the central 
ROI) were elicited in all task-condition-stimuli combinations at the ex
pected latencies (Table 2). Sustained DC potentials modulated with 
oscillatory pattern were observed throughout the time window of 0.5 – 
2.0 sec after stimulus presentation, indicative of ongoing neural activity. 
This shift exceeded the mean behavioral RT (the post-response period) 
and was found in the vowel identification task in quiet, in noise, Stroop 
congruent and Stroop incongruent. 

3.2. Stimulus time-locked TFRs 

Time-frequency analysis of the stimulus time-locked data was per
formed to reveal the underlying oscillatory activity related to Fig. 1. The 
stimulus time-locked TFRs revealed significant power changes (relative 
to the baseline) in all task-condition-stimuli combinations (Fig. 2, for 
TFR with grand mean averages plotted see Supplementary Fig. 7). Both 
the pre- and post-response periods included significant oscillatory ac
tivity, depending on task, condition and stimulus. We observed in gen
eral a high delta-theta power right after stimulus onset in all task- 
condition-stimuli combinations, often followed by alpha desynchroni
zation. Interestingly, there was significant long-lasting post-response 
oscillatory activity in the theta band observable with highest power in 
parietal and occipital ROIs, especially in the Stroop task. Additionally, in 

Table 1 
Time-frequency windows used to localize the sources of frequency bands activities. The baseline- and activation periods are relative to stimulus onset (stimulus onset is 
0 ms).  

Frequency band Frequency range [Hz] Baseline period [ms re stimulus onset] Activation period [ms re stimulus onset] 

Pre-response Theta 4 – 8 (− 200) – (− 900) 0 – 700 
Pre-response Alpha 8 – 12 (− 200) – (− 600) 200 – 600 
Pre-response Beta Synchronization 13 – 18 (− 200) – (− 600) 200 – 600 
Pre-response Beta Desynchronization 13 – 30 (− 200) – (− 800) 0 – 600 
Post-response Theta 4 – 8 (− 200) – (− 800) 1200 – 1800 
Post-response Alpha 8 – 12 (− 200) – (− 600) 1200 – 1600 
Post-response Beta 13 – 30 (− 200) – (− 600) 800 – 1400  
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all task-condition-stimuli combinations, there was beta-band activity 
observed in the post-response period in the frontal and central ROIs. 
Some transient changes of oscillatory power were also observed in the 
gamma and beta range. 

3.3. Response time-locked TFRs 

To separate the response-related from stimulus-related activity, the 
recordings were averaged with respect to the RT (Fig. 3, for cluster- 
based permutation test results see Supplementary Fig. 1). This means 
that the stimulus onset was no longer synchronized among trials (i.e., 
jitters) but the responses were aligned at the exact same time point in 
each trial (0 sec. on the abscissa in Fig. 3). In the response time-locked 
grand mean averages (blue traces in the panels of Fig. 3), there was 
no observable early component (i.e., stimulus time-locked N1 compo
nent, see Fig. 1B-E and compare blue traces in the panels of Supple
mentary Fig. 7 with those in Fig. 3). The P3 component was, however, 
still well discernible in the response time-locked data (blue traces in the 
panels of Fig. 3B-D, F-G, J-K and N-P at around 0 s.). Interestingly, there 
were two distinct peaks/components shortly before and after the 0 s. 
observable in frontal-ROI (Fig. 3A, E, I, M). 

In the time-frequency domain, following the stimulus presentation, 
delta-theta synchronization was found in all response-time locked TFRs. 
This pre-response delta-theta power in the vowel identification task in 
quiet, Stroop congruent, and Stroop incongruent were weaker in com
parison to the stimulus time-locked TFRs (Fig. 2, for difference-TFRs 
between stimulus- and response time-locked TFRs see Supplementary 

Fig. 2). Additionally, alpha desynchronization overlapping the response 
time in all response time-locked TFRs (more prominent in Stroop task) 
was evident. 

After the behavioral response, post-response alpha synchronization 
was found in the parietal and occipital regions (Fig. 3G, H) in the noise 
condition. This was stronger in response time-locked TFRs than 
compared to stimulus time-locked TFRs (Figs. 2, 5E-H). Finally, the beta 
activity in the post-response period was observed in both stimulus- and 
response time-locked TFRs, mainly in frontal-ROIs (Figs. 2, 5A, E, I, M). 

Taken together, the stimulus time-locked and response time-locked 
TFRs shared most of the properties with some minor differences 
(Fig. 2, Supplementary Fig. 1). Difference TFRs (Supplementary Fig. 2) 
revealed that the main differences were observed in the time between 
stimulus onset and response time (pre-response period), especially in 
theta band. The post-response period appeared similar in stimulus time- 
locked and response time-locked TFRs. 

3.4. Sensory load: vowel identification in noise vs. quiet 

To reveal the effect of sensory load on the TFRs, we subtracted the 
stimulus time-locked TFRs in noise (Fig. 4E-H) from those in quiet 
(Fig. 4A-D). Significant effects of sensory load were found (Fig. 4I-L) 
(cluster-based permutation test, noise vs. quiet, p < 0.05): (1) less delta 
and theta activity in noise compared to the quiet condition in all ROIs, 
most prominent in the frontal ROI (Fig. 4I-L, this effect was mostly due 
to reduced evoked power in noise compared to the quiet condition, 
Supplementary Fig. 3), (2) more alpha power in noise compared to the 

Fig. 1. A. Mean RTs (response- or reaction times) from all participants in the vowel identification task in quiet, in noise, Stroop congruent and incongruent. Filled 
circles indicate individual data, and open circles indicate the grand mean RT from all participants. B-E. Grand mean ERPs (event-related potentials) in the central ROI 
for B. vowel identification task in quiet; C. vowel identification task in noise; D. Stroop congruent; E. Stroop incongruent. *** ~ p < 0.001. 

Table 2 
Response times, N1- and P3-amplitudes and latencies for the vowel identification and the Stroop task for central ROI, shown as means and standard deviations.  

Task/Condition Response Time [ms] N1 Amplitude [µV] N1 Latency [ms] P3 Amplitude [µV] P3 Latency [ms] 

Vowel identification in Quiet 452.3 ± 126.2 − 4 ± 2.9 94.5 ± 16.4 8 ± 3.6 322.5 ± 79.8 
Vowel identification in Noise 565.1 ± 116.2 − 2.5 ± 2 182.5 ± 21.8 7 ± 3.6 390.5 ± 42.5 
Stroop congruent 480.5 ± 102 − 4.4 ± 2.9 96.5 ± 15 8.6 ± 5.4 330.5 ± 66.5 
Stroop incongruent 525.3 ± 114.9 − 4 ± 2.7 96.5 5 ± 15.3 7.9 ± 4 328.5 ± 50.4  
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quiet condition, around and after the RT in all ROIs, but predominantly 
in the occipital ROI; (3) more theta power in noise compared to the quiet 
condition in the parietal and occipital ROIs; (4) transient differences in 
beta-gamma bands. 

3.5. Cognitive load: stroop incongruent vs. vowel identification in quiet 

The task-condition-stimuli combinations allowed to study different 
aspects of cognitive load. To quantify the cognitive load we compared 
Stroop incongruent, involving the maximal cognitive load (including 

conflict processing), with vowel identification in quiet, involving the 
lowest cognitive load. That Stroop incongruent was the most chal
lenging is supported by the significantly prolonged response time 
compared to the Stroop congruent (and vowel identification task, 
Fig. 1A). This comparison (Stroop incongruent vs. vowel identifcation 
task in quiet) allowed us to further use the same baseline task (vowel 
identification task in quiet), and thus enabled a direct comparison be
tween cogntive load effects with sensory load effects. 

The mean TFR of the vowel identification task (Fig. 5A-D) was sub
tracted from the mean TFR of Stroop incongruent (Fig. 5E-H) to study 

Fig. 2. Stimulus time-locked TFRs with black contours, showing the cluster-based permutation test result compared to the baseline (cluster-based permutation test, p 
< 0.05) for: A-D. Vowel identification in quiet, E-H. Vowel identification in noise, I-L. Stroop congruent and O-P. Stroop incongruent. Stimulus onset (0 ms) and mean 
RT (response- or reaction time) are shown as grey vertical lines. The index shown in the central ROI-TFRs (B, F, J, and N) correspond to the index of significant 
activity used in the following text. Significant oscillatory activity in the vowel identification task in quiet (A-D) included delta-theta- synchronization (index 1), beta 
synchronization (index 2), and beta-gamma desynchronization (index 3) after stimulus onset. After the mean response time (post-response period) there was a 
significant beta synchronization (index 4) in the vowel identification task in quiet. In the vowel identification task in noise (E-H) the significant activities were delta- 
theta synchronization (index 1), alpha desynchronization (index 2), and beta desynchronization (index 3). In the post-response period, there were significant theta- 
alpha synchronization (index 4) and beta synchronization (index 5). In the Stroop congruent (I-L) significant activity included delta-theta synchronization (index 1), 
and alpha-beta synchronization (index 2). After the response (post-response period) activity included theta synchronization (index 3) and beta synchronization and 
(index 4). The significant activities in Stroop incongruent (M-P) included delta-theta synchronization (index 1), alpha desynchronization (index 2), beta synchro
nization (index 3) and beta-gamma desynchronization (index 4). In the post-response period, significant delta-theta synchronization (index 5) and beta synchro
nization (index 6) were evident. 
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cognitive load effects. The difference TFRs revealed several significant 
effects (cluster-based permutation test, noise vs. quiet, p < 0.05): (1) 
theta synchronization was more pronounced in the Stroop incongruent 
than in the vowel identification task at around behavioral response time 
and lasted for about 500 ms. This significant difference in theta between 
the two tasks was observable in all ROIs and was found in all difference 
plots (Fig. 5I-L); (2) larger alpha power in the Stroop incongruent 
compared to the vowel identification at around 1 second post-stimulus, 
most prominent in parietal and occipital ROIs (Fig. 5K-L); and (3) there 
were differences in beta-gamma transients (Fig. 5I-L). 

3.6. Conflict processing: stroop incongruent vs. stroop congruent 

A way to quantify conflict processing is by the comparison between 
Stroop incongruent and Stroop congruent, known also as the congruency 
effect (or Stroop effect). Within the Stroop task, both these stimuli 
impose cognitive load, however, the incongruent stimuli involves more 
conflict processing. The mean TFR of the congruent stimuli (Fig. 6A-D) 

was subtracted from the mean TFR of the incongruent stimuli (Fig. 6E- 
H) to reveal the neural correlates of conflict processing in absence of the 
shared aspects of cognitive load involved in the processing of both 
stimuli (neuronal activities related to these aspects will be eliminated 
due to the subtraction). 

The subtraction revealed significant effects (cluster-based permuta
tion test, incongruent vs. congruent, p < 0.05) including: (1) statistically 
higher theta power in the congruent vs. incongruent trials in both pre- 
response and post-response periods (Fig. 6I-L). In other bands differ
ences were not significant with the exception of (2) small islands in beta- 
gamma range, and (3) alpha at around 1 second in parietal and occipital 
ROIs (Fig. 6K-L). 

3.7. Sources of oscillatory activities 

We localized the significant oscillatory activations to their estimated 
sources in the brain (for more details of the time- and frequency- 
windows used for the analysis see Methods Source localization, 

Fig. 3. Response time-locked TFRs for: A-D. Vowel identification task in quiet, E-H. Vowel identification task in noise, I-L. Stroop congruent, M-P. Stroop incon
gruent. Behavioral response onset (0 ms) and mean stimulus onset are shown as grey vertical lines. In the grand mean averages (blue trace), the N1 component 
disappeared in all panels. Only the P3 component remained discernible, especially in frontal ROI with a bimodal peak. In these response time-locked TFRs, the post- 
response activity is still well discernible, suggesting that both the stimulus and the response are involved in its generation (for difference-TFRs between stimulus- and 
response time-locked TFRS see Supplementary Fig. 2). 
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Table 1). We focused on activity that was significantly different from 
baseline (Fig. 2). Only sources in cerebral cortex were considered and 
transient activities were not considered. In what follows we highlighted 
similarities and differences between the sources of the specific task/ 
condition/stimulus (for details see Supplementary Tables 1–4). 

3.7.1. Sources comparison: vowel identification task in quiet and in noise 
In the pre-response activity (Fig. 7 and Tables 3, 4 Pre-Response), 

sources often had a bihemispheric activation pattern. In the pre- 
response period, the oscillatory activity was dominated by theta 
response that had sources in middle and inferior frontal gyrus, superior 
temporal gyrus, as well as precuneus. This was more localized in the 
noise condition. Furthermore, in the noise condition we observed alpha 
desynchronization. The alpha desynchronization had sources in superior 
and inferior temporal gyrus, inferior and middle frontal gyrus, and 

precuneus. Post-response activity (Fig. 7 and Tables 3, 4 Post-Response) 
was mainly in the beta band that had widespread sources in frontal 
gyrus, cingulate gyrus, and precuneus on both hemispheres. Addition
ally, there was alpha synchronization in the noise condition that had 
sources on the left hemisphere, mainly in frontal lobe (widespread) and 
lingual gyrus. 

3.7.2. Sources comparison: vowel identification in quiet and stroop 
incongruent 

Stroop incongruent showed more significant activities than vowel 
identification in quiet in the pre-response period (Figs. 7, 8 and Tables 3, 
6 Pre-Response). Pre-response theta synchronization had sources in 
middle frontal gyrus and cingulate gyrus, but were localized to the left 
hemisphere in Stroop incongruent. Beta synchronization sources were 
also more localized mostly to left temporal gyrus in Stroop incongruent, 

Fig. 4. Effects of sensory load on oscillatory activities. A-D. TFRs of the vowel identification task in quiet. E-H. TFRs of the vowel identification task in noise. I-L. 
Difference-TFRs between TFRs of the vowel identification in quiet and in noise to observe sensory load effects. In the difference plots (I-L), red color means more 
power in noise condition, while blue means more power in quiet condition. Noise resulted in decreased pre-response theta activity. Whereas the pre-response theta 
power was weaker, in the post-response period higher theta and alpha activities were observed in noise compared to the quiet condition. Stimulus onset (0 ms) and 
mean RT (response- or reaction time) are shown as grey vertical lines. Blue trace in A-H denotes the less- filtered ERPs from the same ROI. Black contours in I-L 
denotes significant differences between the two conditions (cluster-based permutation test, p < 0.05). 

Brilliant et al.                                                                                                                                                                                                                                   



NeuroImage 289 (2024) 120546

10

while in vowel identification the sources were postcentral gyrus, parietal 
lobule and precuneus. Beta desynchronization in both Stroop incon
gruent and vowel identification were widely distributed, including 
precuneus and lingual gyrus. Additionally, in Stroop incongruent alpha 
desynchronization was observed, with sources including middle and 
inferior temporal gyrus as well as pre- and postcentral gyrus. 

In the post-response period (Figs. 7, 8 and Tables 3, 6 Post- 
Response), beta activity was observed in both vowel identification and 
Stroop incongruent, with their sources being superior frontal gyrus and 
cingulate gyrus. In Stroop incongruent, we furthermore observed sig
nificant post-response theta, with sources in middle frontal gyrus and 
bilateral paracentral gyri.3.7.3 Sources Comparison: Stroop Congruent and 
Stroop Incongruent 

Stroop incongruent showed more significant activities than Stroop 
congruent in the pre-response period (Fig. 8 and Tables 5, 6 Pre- 
Response). In the pre-response period, theta synchronization activated 
sources on the left hemisphere in Stroop congruent, whereas it activated 

sources mainly in the right hemisphere in Stroop incongruent. The 
sources were mainly localized in the middle frontal gyrus. Furthermore, 
compared to Stroop congruent, in the Stroop incongruent we observed 
less temporal activation and more activation in cingulate gyrus. The 
frontal activation was also more widespread in the Stroop incongruent. 
Additionally, we observed alpha and beta desynchronization in Stroop 
incongruent, with sources in the temporal lobe, pre- and postcentral 
gyrus, and precuneus. 

In the post-response period (Fig. 8 and Tables 5, 6 Post-Response), 
theta and beta activity were observed in both Stroop congruent and 
incongruent. The sources of theta activity were in the frontal gyrus. In 
the Stroop congruent, the inferior frontal gyrus and the superior tem
poral gyrus were activated, together with lingual and fusiform gyrus. In 
the Stroop incongruent, it was the middle frontal gyrus and bilateral 
paracentral gyri. The post-response beta activity had sources for both 
types of Stroop stimuli in superior frontal and cingulate gyrus, similar to 
the sources of post-response beta in the vowel identification task both in 

Fig. 5. Effects of cognitive load on oscillatory activities. A-D. TFRs of the vowel identification task in quiet. E-H. TFRs of Stroop incongruent. I-L. Difference-TFRs 
between TFRs of the vowel identification in quiet and Stroop incongruent to study the cognitive load effects. In the difference plots (I-L), red color means more power 
in Stroop incongruent, while blue means more power in vowel identification task. The difference is most pronounced in the theta and delta range at around the RT 
and lasted for approximately 500 ms. At around 1 second post-stimulus, there was also stronger alpha power in Stroop incongruent. Stimulus onset (0 ms) and mean 
RT (response- or reaction time) are shown as grey vertical lines. Blue trace in A-H denotes the ERPs from the same ROI. Black contours in I-L denotes significant 
differences between the two conditions (cluster-based permutation test, p < 0.05). . 
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quiet and in noise. 

4. Discussion 

The present study, for the first time, directly dissociates between the 
oscillatory neuronal signatures of sensory and cognitive loads. The 
oscillatory activities provided distinct information which is not 
observable in the ERPs. We identified the oscillatory activities for each 
task, condition, and stimuli, localized their sources in the brain, and 
compared between them to study the neuronal signatures of each load. 
We analyzed activities in both pre- and post-response periods and 
observed signatures of executive control, especially in the post-response 
period. 

In general, sensory and cognitive loads showed different effects. 
Higher sensory load resulted in lower theta-delta power in the time 
window between stimulus presentation and behavioral response (pre- 
response period). Differently, higher cognitive load increased theta 
oscillatory activity in the second half of the pre-response period that 
further continued in the post-response period. Furthermore, sensory 

load resulted in prolonged increased alpha power in the post-response 
period, whereas the increased alpha power in cognitive load was less 
robust. In addition to load-specific theta and alpha oscillatory effects, we 
observed task-condition-stimulus specific pre- and post-response beta 
activity and beta-gamma transients. This demonstrates the significant 
amount of postprocessing during challenging listening situations. 

4.1. Sensory load effects 

In all tasks and conditions, after stimulus onset, the largest power 
change was in the delta-theta band (Başar et al., 2001; Demiralp et al., 
2001; Huster et al., 2014), with its timing matching the N1-component 
(Fig. 6A-D). In higher sensory load (noise compared to quiet), theta 
power (mainly evoked, Supplementary Fig. 3) overlapping the early ERP 
component was smaller (Fig. 6E-L), presumably related to the effect of 
energetic masking on sensory-perceptual processing (Riecke et al., 2009; 
Hsiao et al., 2009; Hickok et al., 2015; Niemczak and Vander Werff, 
2019; Yarali, 2020). We furthermore observed increased theta activity 
in noise after the behavioral response in parietal and occipital ROIs 

Fig. 6. Congruency effect (or Stroop effect) on oscillatory activities as signatures of conflict processing. A-D. TFRs of the Stroop congruent. E-H. TFRs of the Stroop 
incongruent. I-L. Difference-TFRs between TFRs of the Stroop congruent and Stroop incongruent to observe the congruency effect. In the difference plots (I-L), red 
color means more power in Stroop incongruent, while blue means more power in Stroop congruent. In congruent stimuli, pre- and post-response activity is stronger in 
both theta band. Stimulus onset (0 ms) and mean RT (response- or reaction time) are shown as grey vertical lines. Blue trace in A-H denotes the ERPs from the same 
ROI. Black contours in I-L denotes significant differences between the two conditions (cluster-based permutation test, p < 0.05). . 
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(Fig. 6K-L). Although this effect in the post-response period was not as 
robust as during cognitive load (e.g., compare Fig. 2F and J or N), 
increased theta suggests involvement of cognitive processing under 
sensory load (compare 4.2 Cognitive Load Effects). The most relevant 
theta-related cognitive process under sensory load may be related to 
active listening, especially extraction of features from background noise 
(Alain et al., 2002; Ciocca, 2008; Tóth et al., 2016) and input compar
ison to target templates in working memory (Bastiaansen and Hagoort, 
2003; Albouy et al., 2017; Nowak et al., 2021). Taken together, the 
present study suggests that there are theta effects of sensory load in the 
pre-response time period and to some degree in the post-response 
period. 

In addition to theta effects, post-response alpha power was higher in 
noise (Fig. 2I-L). Such alpha power increase is likely a marker of func
tional inhibition of irrelevant information (Sauseng et al., 2005; Kli
mesch, 2012; Strauß et al., 2014; Wöstmann et al., 2015, 2017). The 
balance between top-down processes of template matching and func
tional inhibition (Gazzaley and Nobre, 2012; Obleser et al., 2012), re
flected by theta and alpha oscillations, is modulated by attentional 
control (Klimesch et al., 1999; Kerlin et al., 2010; Keller et al., 2017; 
Fiebelkorn and Kastner, 2019; Cona et al., 2020). Such attentional 
control requires more cognitive resources when there are competing 
speakers (as in babble noise), thus increasing listening effort (Picou 
et al., 2016; Krueger et al., 2017; Dimitrijevic et al., 2019). Therefore, 

listening in noise can be regarded as an attentional interplay between 
early sensory-perceptual processing, template matching in working 
memory, and functional inhibition of the distractor. 

4.2. Cognitive load effects 

The effect of cognitive load (Stroop incongruent compared to vowel 
identification) was manifested in theta. This difference in theta started 
within the pre-response period (in its second half) and outlasted the 
behavioral response (Fig. 3I-L). It is known that the processing of con
flict information during the Stroop task occurs in initial perceptual and 
mainly in later post-perceptual stages (Lew et al., 1997; Boenke et al., 
2009; Henkin et al., 2010). The current data further emphasize that 
cognitive processing lasts even beyond the behavioral response. This 
also confirms the role of theta as a common substrate for cognitive 
control (Cavanagh and Frank, 2014). While in general, theta is signaling 
cognitive control, there may be multiple types of executive functions 
that come into play at a given time point (Eisma et al., 2021; Xiao et al., 
2023). The most relevant aspect of cognitive control in the current study 
is conflict processing (Hanslmayr et al., 2008; Ergen et al., 2014; Li et al., 
2021; Heidlmayr et al., 2020; Sharma et al., 2021; Beldzik et al., 2022; 
see 4.3. Conflict Processing). 

In our interpretation, increased theta in Stroop incongruent 
compared to vowel identification is a signature of proactive control 

Fig. 7. Sources of oscillatory activities in the Vowel identification task. A. The central ROI TFRs for vowel identification in quiet with indices corresponding to the 
sources. B. Sources of oscillatory activities in vowel identification in quiet (see Table 3, for the nomenclature of the brain areas and their coordinates see Supple
mentary Table 1). C. The central ROI TFRs for vowel identification in noise with indices corresponding to the sources. D. Sources of oscillatory activities in vowel 
identification in noise (see Table 4, for the details see Supplementary Table 2). The specific time-frequency windows for the source localization of each oscillatory 
activity are listed in the Methods section (Table 1). 
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(Cooper et al., 2015; van Driel et al., 2015; Littman et al., 2019; Eisma 
et al., 2021), in particular action monitoring in the post-response period 
(Cavanagh et al., 2012). Action monitoring is a crucial cognitive process 
for maintaining task requirements throughout the session and for 

Fig. 8. Sources of oscillatory activities in the Stroop task. A. The central ROI TFRs for Stroop congruent with indices corresponding to the sources. B. Sources of 
oscillatory activities in Stroop congruent (see Table 5, for the nomenclature of the brain areas and their coordinates see Supplementary Table 3). C. The central ROI 
TFRs for Stroop incongruent with indices corresponding to the sources. D. Sources of oscillatory activities in Stroop incongruent (see Table 6, for the details see 
Supplementary Table 4). The specific time-frequency windows for the source localization of each oscillatory activity are listed in the Methods section (Table 1). 

Table 3 
List of source localization results in pre- and post-response periods for vowel 
identification in quiet. (For details of the coordinates, see Supplementary 
Table 1.1).  

Vowel Identification in Quiet 

Frequency Band Sources 

1. Theta (pre-response) Middle frontal gyrus (BA 9, 46) 
Inferior frontal gyrus (BA 44, 45) 
Superior temporal gyrus (BA 22, 38, 41, 42) 
Precentral gyrus (BA 6) 
Cingulate gyrus (BA 23) 
Superior parietal lobule (BA 5) 
Precuneus 

2. Beta synch. (pre-response) Postcentral gyrus (BA 1, 2, 3) 
Precuneus (BA 31) 
Inferior parietal lobule (BA 39, 40) 

3. Beta desynch. (pre-response) MedioVentral occipital cortex 
Cingulate gyrus (BA 23) 
Precuneus (BA31) 
Superior temporal gyrus (BA 22, 38) 

4. Beta (post-response) Cingulate gyrus (BA 23, 24) 
Superior frontal gyrus (BA 8) 
Precuneus (BA31) 
MedioVentral occipital cortex  

Table 4 
List of source localization results in pre- and post-response periods for vowel 
identification in noise. (For details of the coordinates, see Supplementary 
Table 1.2).  

Vowel Identification in Noise 

Frequency Band Sources 

1. Theta (pre-response) Inferior parietal lobule (BA 39, 40) 
Superior frontal gyrus (BA 8, 9) 
MedioVentral occipital cortex 
Precuneus 

2. Alpha desynch. (pre-response) Superior temporal gyrus (BA 38, 41, 42) 
Inferior temporal gyrus (BA 37) 
Middle frontal gyrus (BA 9, 46) 
Inferior frontal gyrus (BA 44, 45) 
Precuneus (BA 31) 
Orbital gyrus (BA 11) 

3. Beta desynch. (pre-response) MedioVentral occipital cortex 
Precuneus (BA 31) 
Superior frontal gyrus (BA 8) 

4. Alpha synch. (post-response) Superior frontal gyrus (BA 8, 9, 10) 
Middle frontal gyrus (BA 9, 46) 
Inferior frontal gyrus (BA 44, 45) 
MedioVentral occipital cortex 

5. Beta (post-response) Superior frontal gyrus (BA 6, 8) 
Middle frontal gyrus (BA 9, 46) 
Inferior frontal gyrus (BA 44, 45) 
Precuneus (BA31) 
Cingulate gyrus (BA 23, 24) 
MedioVentral occipital cortex  
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planning of subsequent responses (Gratton et al., 2018; Cohen, 2016), 
and is sensitive to attentional modulation (Fiebelkorn and Kastner, 
2019). 

4.3. Conflict processing 

The Stroop congruency effect, i.e., comparison between Stroop 
congruent and incongruent stimuli, is considered a gold-standard mea
sure of selective attention and inhibition abilities (Stroop, 1935; Ergen 
et al., 2014; Kestens et al., 2021; Haciahmet et al., 2023). Previous 
studies in the visual modality demonstrated increased theta power 
during conflict processing (Kerns et al., 2004; Hanslmayr et al., 2008; 
Ergen et al., 2014). Reports regarding the auditory version of the Stroop 
task show similar effects, although to a much lesser extent (Oehrn et al., 
2014; van de Nieuwenhuijzen et al., 2016). 

In the present study, we observed increased theta power approxi
mately 300 ms post-stimulus to incongruent compared to congruent, but 
this effect was not significant (Fig. 8I-J). The sensor level TFRs in this 

study suggested a more robust effect in a lower delta-theta power to 
incongruent vs. in congruent, occurring already in the pre-response 
time. In this version of the auditory Stroop task, the stimulus identifi
cation may have already occurred during the first syllable of the pre
sented word (Henkin et al., 2002). Furthermore, the source 
reconstruction of theta suggested a hemisphere difference in the conflict 
processing (left in congruent and right in incongruent stimulation). This 
may relate to the specific difference in the first vowels that can be 
resolved by pitch comparison (differences in speaker’s gender) more 
pronounced in the right hemisphere. In Stroop congruent, pitch and 
semantics are consistent, thus more pronounced in the left hemisphere 
(Zatorre and Belin, 2001). This suggests that the signature of conflict 
processing is crucially dependent on the exact stimulus. 

Finally, the present data showed increased theta power to congruent 
than to incongruent stimuli in the post-response period (Fig. 8I-L), 
which have been similarly observed during intracranial recordings in 
frontal cortex in an auditory Stroop task (Oehrn et al., 2014). This theta 
difference is more likely related to a difference in proactive cognitive 
control more than to conflict processing per se (see 4.2, Cognitive Load 
Effects). 

4.4. Pre-Response beta and alpha, post-response beta, and gamma activity 

In addition to the sensory/cognitive load effects, there were other 
observable oscillatory activities (Fig. 2). A comparison between the 
response time-locked (Fig. 5) and the stimulus time-locked TFRs (Fig. 2), 
revealed that while pre-response delta-theta activity was related to the 
stimulus, other activities were likely related to a combination of both 
stimulus- and response-components (Supplementary Fig. 2). Comparing 
the response- and the stimulus time-locked grand mean averages, the 
early component (i.e., N1 in stimulus time-locked data) was stimulus 
related, while the later component (i.e., P3, specifically P3b) was com
mon to both stimulus- and response time-locked data (for details see: 
Polich, 2007). Finally, the second peak/component (Fig. 3A, E, I, M) 
shortly after the response in the response time-locked data may be pri
marily motor response-related (Fogarty et al., 2020). 

Beta synchronization is known as signature of motor preparation 
(Spitzer and Haegens, 2017). We observed beta synchronization in the 
pre-response period (Fig. 2J-L, 3J-L) that may be related to motor 
function. Another cognitive process reflected in beta might be lexical 
retrieval (Signoret et al., 2013). Given the beta was also observable in 
the vowel identification task that did not require lexical retrieval, and 
not only in the Stroop task in the present setting, we assume that it likely 
reflects motor function. Along with pre-response beta, alpha desynch
ronization occurring around the response time is also observable in both 
stimulus- and response time-locked TFRs, especially in central ROI 
(Fig. 2B, F, J, N and 5B, F, J, N). Alpha desynchronization might be 
related to attentional control (Sauseng et al., 2005; Klimesch, 2012; 
Wöstmann et al., 2015, 2017; Sharma et al., 2021) and beta activity to 
the motor preparation (Spitzer and Haegens, 2017). 

In the post-response period, beta synchronization lasted around a 
second and was strongest in frontal ROI (Fig. 2A, E, I, M and 5A, E, I, M). 
This might be further related to motor function (Pfurtscheller and Da 
Silva, 1999; Engel and Fries, 2010). This beta activity was observed in 
both stimulus- and response time-locked TFRs, indicating the role of 
frontal circuitry in integrating sensory-related and response-related as
pects. A similar increase in beta power, occurring as repeating bursts, 
has been documented during working memory operation (Siegel et al., 
2009; Lundqvist et al., 2016), likely reflecting preservation and updat
ing of the current information in working memory (Engel and Fries, 
2010; Spitzer and Haegens, 2017; Coleman et al., 2023). 

Gamma transients were also identified during the whole trial dura
tion (i.e., Fig. 2A). Gamma activity reflects both sensory (Schadow et al., 
2007) and cognitive processing (Herrmann et al., 2010). It has been 
recorded oftentimes in invasive studies (Fontolan et al., 2014; Nourski 
et al., 2022), and also during the Stroop task (Oehrn et al., 2014; Tang 

Table 5 
List of source localization results in pre- and post-response periods for Stroop 
congruent. (For details of the coordinates, see Supplementary Table 1.3).  

Stroop Congruent 

Frequency Band Sources 

1. Theta (pre-response) Middle frontal gyrus (BA 9, 46) 
Inferior frontal gyrus (BA 44, 45) 
Superior temporal gyrus (BA 38) 
Middle temporal gyrus 
Inferior parietal lobule (BA 40) 

2. Beta synch. (pre-response) Superior frontal gyrus (BA 8) 
Precentral gyrus (BA 6) 
Middle frontal gyrus 

3. Theta (post-response) Superior temporal gyrus (BA 38) 
Inferior frontal gyrus (BA 44, 45) 
Fusiform gyrus (BA 37) 
Orbital gyrus (BA 12, 47) 

4. Beta (post-response) Superior frontal gyrus (BA 8) 
Precentral gyrus A6cvl 
Middle frontal gyrus 
Cingulate gyrus (BA 23) 
Precuneus (BA31) 
MedioVentral occipital cortex 
Fusiform gyrus (BA 37)  

Table 6 
List of source localization results in pre- and post-response periods for Stroop 
incongruent. (For details of the coordinates, see Supplementary Table 1.4).  

Stroop Incongruent 

Frequency Band Sources 

1. Theta (pre-response) Superior frontal gyrus (BA 8, 9) 
Middle frontal gyrus (BA9, 46) 
Cingulate gyrus (BA 24, 32) 

2. Alpha desynch. (pre-response) Postcentral gyrus (BA 2) 
Precentral gyrus (BA 6) 
Inferior parietal lobule (BA 40) 
Middle temporal gyrus (BA 21) 
Inferior temporal gyrus (BA 20) 

3. Beta synch. (pre-response) Middle temporal gyrus (BA 21) 
Inferior temporal gyrus (BA 20, 37) 
Middle temporal gyrus (BA 37) 
Superior temporal gyrus (BA 38) 

4. Beta desynch. (pre-response) Precuneus (BA31) 
MedioVentral occipital cortex 

5. Theta (post-response) Paracentral lobule (BA 4) 
Middle frontal gyrus (BA9, 46) 

6. Beta (post-response) Superior frontal gyrus (BA 8, 9) 
Middle frontal gyrus (BA9, 46) 
Inferior frontal gyrus (BA 44) 
Cingulate gyrus (BA 23, 24)  
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et al., 2016; van de Nieuwenhuijzen et al., 2016). In auditory cortex 
(Yusuf et al., 2017; Nourski et al., 2022), gamma-band responses were 
found along with alpha activity (Weisz et al., 2011), suggesting 
alpha-gamma coupling (see also Roux and Uhlhaas, 2014). Due to their 
transient characteristics, significant effects in gamma band were rare in 
our scalp data, but the data suggests dominant occurrence of gamma 
desynchronizations during the pre-response period and gamma syn
chronizations in the post-response period. 

4.5. Source localization 

While topographic plots provide some spatial information of the EEG 
activity, their sources can be further estimated using beamforming 
(Debener et al., 2005; Hauthal et al., 2013). Sources of N1 covered the 
expected auditory cortex bilaterally, but also included sources beyond 
auditory cortex (Supplementary Fig. 4). Sources of P3 were previously 
reported to be localized in superior temporal, medial frontal- and infe
rior frontal gyrus (Knight et al., 1995; Opitz et al., 2002; Doeller et al., 
2003; Garrido et al., 2009), corresponding to the present results (Sup
plementary Fig. 4). Significant activities from the TFRs (Fig. 3, 4) were 
also localized to temporal and frontal lobes, as well as cingulate gyrus 
and precuneus. 

The activation of temporal lobe was expected, given the tasks were 
auditory, while frontal lobe activation has been attributed to executive 
control and working memory (Braver, 2012; Cristofori et al., 2019). 
Involvement of cingulate gyrus is related to conflict processing (Haupt 
et al., 2009; Christensen et al., 2011), action selection (Akam et al., 
2021) and translation of intentions into motor actions (Hoffstaedter 
et al., 2014; Holroyd and Verguts, 2021). The connection between 
cingulate gyrus and dorsolateral prefrontal cortex has been reported in 
conflict tasks (Kerns et al., 2004, see also Oehrn et al., 2014). Similarly, 
theta related coupling between anterior cingulate and left prefrontal 
cortex was also found in a previous Stroop task study (Hanslmayr et al., 
2008). This connection between cingulate gyrus and frontal lobe might 
be part of the saliency networks (Seeley, 2019; Uddin et al., 2019; 
Uddin, 2021), which activated to route information further to the motor 
cortex. 

Precuneus (Cavanna and Trimble, 2006) was a main source of the 
oscillatory activities in this study. This area is known to be involved in 
memory functions (Baird et al., 2013; Ye et al., 2018) and information 
integration (Lyu et al., 2021). Recently, proactive control has been 
similarly associated with activation of both precuneus as well as 
cingulate cortex (Sznabel et al., 2023). In sum, the active network found 
in this study is consistent with areas known to be responsible for sensory 
processing of auditory stimulus as well as higher-level cognitive func
tions, such as memory, action monitoring, and conflict processing. 

4.6. Limitation and future directions 

The present study shows that sensory- and cognitive loads specif
ically modulate brain processing before and after the behavioral 
response. However, we did not modify the demand for load processing 
(e.g., working memory- or conflict loads or demand for more attentional 
control), nor studied the linguistic processing as well the circuity of 
these oscillatory activities. Such studies, together with investigations of 
the effects of declined cognitive performance and sensory processing, as 
present in aging and hearing impairment, are crucial to apply the full 
potential of these oscillatory markers. 

5. Conclusion 

Oscillatory activities allow differentiating listening under auditory 
sensory and cognitive load. Sensory load initially reduced theta-activity 
and increased alpha activity. Cognitive load, on the other hand, 
increased theta power over long periods of time after behavioral 
response. In this post-response period, beta activity was observed in all 

conditions and tasks. Combining the results of the present study with 
previous literatures suggests that the increased alpha power in sensory 
load signifies an attention-modulated inhibitory process and the theta 
increase in cognitive load reflects conflict processing, proactive control, 
and action monitoring. The sources of the corresponding neuronal ac
tivities included the frontal lobe, temporal lobe, motor cortex, cingulate 
gyrus and precuneus. Together with their sources, the observed oscil
latory activities in this study could be exploited as signatures/bio
markers of the brain processing related to auditory sensory and 
cognitive load in complex listening situations. 
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