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The relation between implicit 
statistical learning and proactivity 
as revealed by EEG
Dorota Sznabel 1,2*, Rüdiger Land 1, Bruno Kopp 3,4 & Andrej Kral 1,2,4

Environmental events often occur on a probabilistic basis but can sometimes be predicted based on 
specific cues and thus approached proactively. Incidental statistical learning enables the acquisition 
of knowledge about probabilistic cue-target contingencies. However, the neural mechanisms of 
statistical learning about contingencies  (SLC), the required conditions for successful learning, and the 
role of implicit processes in the resultant proactive behavior are still debated. We examined changes 
in behavior and cortical activity during an  SLC task in which subjects responded to visual targets. 
Unbeknown to them, there were three types of target cues associated with high-, low-, and zero 
target probabilities. About half of the subjects spontaneously gained explicit knowledge about the 
contingencies (contingency-aware group), and only they showed evidence of proactivity: shortened 
response times to predictable targets and enhanced event-related brain responses (cue-evoked P300 
and contingent negative variation, CNV) to high probability cues. The behavioral and brain responses 
were strictly associated on a single-trial basis. Source reconstruction of the brain responses revealed 
activation of fronto-parietal brain regions associated with cognitive control, particularly the anterior 
cingulate cortex and precuneus. We also found neural correlates of  SLC in the contingency-unaware 
group, but these were restricted to post-target latencies and visual association areas. Our results 
document a qualitative difference between explicit and implicit learning processes and suggest that in 
certain conditions, proactivity may require explicit knowledge about contingencies.

Statistical learning refers to the incidental acquisition of environmental  statistics1–4, including temporal 
 regularities5,6 and spatial  distributions7,8. Not all regularities are equally relevant for behavior. For example, 
learning about stimulus occurrence frequency enables different behavioral adaptations than learning about tran-
sitional probabilities between stimulus pairs. In the case of learning about predictive relations between temporally 
separated cue and target events (i.e., statistical learning about contingencies,  SLC), the greatest behavioral benefit 
is becoming able to act proactively, e.g., to prepare for the likely upcoming targets upon seeing a target  cue9–11. 
Such proactive exploitation of contingencies involves anticipatory motor preparation, substantially shortening 
response times (RTs) to  targets12–16.

Exposure to structured input may lead to explicit (declarable) knowledge about the underlying  regularities17, 
and typically such knowledge can be flexibly applied in a goal-oriented  manner18. However, even without explicit 
knowledge, neural and behavioral responses to statistically structured inputs may—upon sufficient exposure—
deviate from those elicited by unstructured inputs in a process referred to as implicit  learning19. Despite ample 
evidence that implicit acquisition of statistical regularities affects  behavior4,7,19–22, the range of adaptations it 
enables is  controversial18,20,23,24. In particular, the emergence of anticipatory motor preparation in  SLC tasks has 
rarely been directly  addressed25–27. Most evidence for implicit statistical learning in humans comes from para-
digms that preclude proactive behavior (at least 80% according to a recent  review2) and instead assess learning 
with post-exposure memory  tests28 such as familiarity  judgments5,22,29,30, or completion and exclusion  tasks21,31–33. 
Furthermore, even measures based on RTs are usually inconclusive in showing cue-triggered  anticipation26.

Anticipatory and preparatory processes can be conclusively demonstrated by measuring EEG brain responses 
to cue events, such as the contingent negative variation (CNV)13,15,33. The CNV is a negative potential occurring 
over central scalp locations during the interval separating a target cue from an action-requiring target stimulus, 
commonly interpreted as a marker of anticipation and action  preparation15,34,35. There are some reports of implicit 
CNV  generation36–38; however, these studies construe ‘implicitness’ as the lack of explicit information about 

OPEN

1Department of Experimental Otology, Hannover Medical School, Hannover, Germany. 2Cluster of Excellence 
“Hearing4all”, Hannover, Germany. 3Department of Neurology, Hannover Medical School, Hannover, 
Germany. 4These authors jointly supervised this work: Bruno Kopp and Andrej Kral. *email: sznabel.dorota@
mh-hannover.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-42116-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15787  | https://doi.org/10.1038/s41598-023-42116-y

www.nature.com/scientificreports/

the regularities (i.e., ‘incidentalness’), which should not be equated with the absence of contingency awareness. 
Contingency awareness may emerge spontaneously during  learning17,39,40. Furthermore, these studies explore 
the learning of temporal aspects of sequences rather than the learning of probabilistic relations between different 
event types, which may be subserved by distinct neurocognitive  mechanisms2. Incidental learning of cue-target 
contingencies has also been shown to influence the late parietal cue-P300  potential40,41. Interestingly, the relation 
of cue-P300 to behavioral indices of learning is less clear than CNV’s40–42. While CNV is strictly related to the 
RT speed-up12,43,44, the cue-P300 has been proposed to index the acquisition of knowledge about regularities 
independently of its behavioral  expression4,41.

Finally, the brain networks involved in proactivity and their relation to contingency awareness are yet to be 
established. Prior fMRI studies provided convergent evidence for hippocampal activation during the cue-target 
interval specific to contingency-aware  subjects39,45,46. In this context, the hippocampus showed functional con-
nectivity with the posterior medial frontal, anterior cingulate, and midcingulate  cortex39. Widespread activation 
of frontal, occipital, and parietal regions during incidental learning of cue-target contingencies was also shown by 
EEG source  reconstruction40, although without disambiguating the neural sources of cue-P300 and CNV—two 
distinct stages of cue processing.

In this study, we asked whether anticipatory motor preparation subserving proactivity can be achieved implic-
itly, i.e., without contingency awareness. To that end, we examined multiple aspects of behavior and the brain 
regions involved in cue and target processing. We also asked how these neural correlates correspond to behav-
ioral indices of learning. All analyses were done separately in contingency-aware and unaware subjects to reveal 
potential differences in implicit and explicit processing.

Forty-eight young adults performed two oddball tasks with five visual stimuli (Fig. 1a), including rare targets, 
frequent standards, and three rare deviants. One task allowed for statistical learning of cue-target contingencies 
(oddball-SL task)41 because the three deviants served as target cues and were associated with high-, low-, and zero 
probability of transition into a target (Fig. 1b). Immediately after the oddball-SL task, we ran a questionnaire-
based assessment of explicit knowledge about cue-target contingencies and divided subjects into contingency-
aware and unaware. In the other task (oddball-control), the stimulus sequence was random, rendering the 
targets unpredictable. Both tasks were performed under speed pressure. We first focused on the oddball-SL task 

Figure 1.  Statistical learning paradigm and behavioral outcomes. (a) Stimuli and stimulus sequence timing 
in the oddball tasks. (b) Schematic of stimulus transitions in the oddball-SL task; three cues associated with 
different target probabilities defined three within-task conditions. (c) Classification of individual subjects 
based on the questionnaire and RTs. (d) RTs in the oddball-SL task: data points represent group averages of 
measured RTs for subsequent targets. LMM-derived estimates are shown in color: RT slopes over trials and 95% 
confidence intervals.
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outcomes, where the main analyses included RT data, cue-elicited event-related potentials (ERPs), and the rela-
tion between those ERPs and RT. We expected learning to induce a significant drop in RTs to High relative to 
Low Probability targets. The cue-P300 and CNV were regarded as neural indices of learning. To substantiate the 
functional role of cue-ERPs in anticipatory motor preparation, we probed their single-trial relation to the RTs. 
Behavioral optimization combined with neural markers of anticipation in contingency-unaware subjects would 
demonstrate that proactivity can be achieved through implicit  SLC. The brain sources of the ERPs were estimated 
based on independent component analysis and equivalent dipole source localization. Next, we compared the 
P300 response to predictable and random targets (the latter derived from the oddball-control task). Depending 
on whether the previous measures revealed proactivity, this step would elucidate either a proactive or reactive 
aspect of target processing and its relation to contingency awareness.

Results
Learning-related adaptation of RTs is associated with contingency awareness
The participants had to perform a response-time task with visual stimuli, identifying a target among several 
stimuli with hidden statistical cues. Directly after the task, we used a questionnaire to probe the emergence of 
explicit knowledge (contingency awareness) about cue-target contingencies. We then assessed the impact of this 
awareness on behavioral performance and response times.

Although participants were not informed about the cue-target contingencies, 46% of them (N = 22) noticed the 
predictive relation between the High Probability cue and the target (‘aware’ group; 12 females, mean age = 23.5, 
SD = 4.2; Fig. 1c). Twenty-six subjects remained unaware of the contingencies (‘unaware’ group; 14 females, 
mean age = 25.6, SD = 4.9), but after claiming that the stimuli occurred in a random order (see the questionnaire 
structure, Supp. Fig. S11), 50% of them correctly guessed which stimulus appeared most often before the target 
(chance level = 25%).

Both groups showed ceiling performance, i.e., hit rates were close to 100% (Supp. Table S19) and did not 
differ significantly between groups (Wilcoxon rank-sum test; U(22, 26) = 553.5, z = 9 0.317, p = 0.751). The false 
alarm rate was higher for the contingency-aware than the contingency-unaware group (Wilcoxon rank-sum 
test: U(22, 26) = 519, z = 12–2.4372, p = 0.015), although in both groups the false alarm rate was lower than 1% 
(Supp. Table S19).

Only the contingency-aware group showed behavioral evidence of learning, i.e., a decrease in RTs specific to 
the predictable targets (Fig. 1d). In the contingency-unaware group, the RTs between targets preceded by High 
and Low Probability cues did not differ (see Table 1 for ANOVA results on the linear mixed-model (LMM) data, 
and Supp. Tables S1–S3 for a comprehensive report on the LMM). Hence, the contingency-unaware group did not 
optimize behavior during the task, but the exposure might have implicitly affected their questionnaire answers.

Complementary to the questionnaire-based classification, we performed subject classification based on indi-
vidual subjects’ RTs. This analysis confirmed the adaptation of RTs in 12 subjects, all of whom belonged to the 
contingency-aware group (Supp. Table S18 and Fig. S8). Hence, the online behavioral adaptation was present 
only in the contingency-aware subjects, both on group and individual levels.

SLC modulated neural responses to cues in contingency-aware subjects
Next, we analyzed the effect of statistical learning on neural responses throughout the experiment. Specifically, 
we compared the presence and change in P300 and CNV potentials to the different cues in subjects who became 
aware of the contingencies and those who remained unaware.

Only in the contingency-aware group the P300 amplitudes elicited by High Probability cues increased over 
sequential trials, eventually becoming larger than amplitudes elicited by the other cues (see Fig. 2a and Supp. 
Fig. S1 for the estimated amplitude slopes over trials). This observation was corroborated by the LMM analyses 
(Supp. Tables S4–S6) and by ANOVA performed on the LMM-estimated P300 amplitudes (Table 2). As expected 
from prior  studies40,41, the differential wave (High Probability P300 minus Low Probability P300) was pronounced 
at mid-parietal scalp locations and latencies of about 400–650 ms. It was estimated to originate primarily from 
the middle occipital gyrus (BA-19), precuneus (BA-7), and inferior occipital gyrus (BA-18). These three sources 
accounted for 73.5% of the signal variance. The differences in source-resolved ERPs observed between the High 
and Low Probability cues were significant only in the precuneus (t(21) = 3.17, p-value = 0.002; for remaining 
statistical results, see Supp. Table S14). The source activation was greater for the High Probability cues than for 

Table 1.  3-way ANOVA (type III sums of squares) on the LMM estimates of response times. Condition 
(High-/Low-/Zero Probability); Group (Aware/Unaware); Trial—continuous variable based on event latencies.

Sum Sq Num. df Den. df F p

Condition 0.07 1 102.6 2.90 0.092

Trial 0.41 1 2739.1 17.01 < 0.001

Group 0.09 1 56.7 3.80 0.056

Condition:Trial 1.21 1 2739.9 50.95 < 0.001

Condition:Group 0.00 1 102.6 0.04 0.840

Trial:Group 0.23 1 2739.1 9.76 0.002

Condition:Trial:Group 2.06 1 2739.9 86.38 < 0.001
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Figure 2.  Only contingency-aware subjects showed contingency-related neural changes in cue processing. 
ERPs are shown in two spatiotemporal regions of interest (ROI) related to the cue-P300 (a) and the CNV (b). 
A grey background indicates the time window of these ROIs. ERP traces (group-level grand average and SEM) 
were plotted for each condition. Right-most panels present the main neural source of the respective ERPs. The 
location of the source within the brain is indicated by an equivalent-dipole density map overlaid on horizontal 
and sagittal planes of a brain image. The scalp-projected activity of these sources is shown beneath. Asterisks 
signify a significant difference between the High- and Low Probability conditions (nonparametric permutation 
test with Bonferroni-Holm correction).
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other cues, consistent with the potentials on the scalp (Fig. 2a). The contingency-unaware group showed no 
differentiation of cue-P300 amplitudes between conditions.

The CNV potential was also found only in the contingency-aware group. The CNV amplitudes elicited by 
highly predictive cues increased gradually, eventually becoming significantly more negative than for the other 
cues (Fig. 2b and Supp. Fig. S2 for the estimated amplitude slopes over trials). This was corroborated by the LMM 
analyses (Supp. Tables S7–S9) and by ANOVA performed on the LMM-estimated CNV amplitudes (Table 3). The 
signal in the CNV-dominated time window (650–900 ms) was attributed to the activity in the anterior cingulate 
(BA-24), inferior occipital gyrus (BA-18), and precentral gyrus (BA-6). Together, they accounted for 76.6% of the 
total signal variance. The differences in source-resolved ERPs between the High and Low Probability conditions 
was significant only in the anterior cingulate (t(30) = − 3.03, p-value = 0.002; for remaining statistical results see 
Supp. Table S14). The deflection of the source-resolved ERP was more negative for the High than for the Low 
Probability cues, reminiscent of the scalp-level CNV.

In sum, learning influenced only the ERPs elicited by the highly predictive cues. The observed ERP pattern 
resulted from the precuneus activation, tightly followed by the anterior cingulate cortex activation. Importantly, 
this effect was present only in subjects who became aware of the contingencies.

Both cue-elicited ERP effects are linked to behavioral adaptation
Next, we analyzed the trial-wise relationship between the event-related brain potentials (cue-P300 and CNV) and 
the acceleration of responses during learning in the contingency-aware group. In this group, all learning-related 
changes co-occurred, leaving the question of whether both cue-ERPs are functionally related to acceleration. 
We asked whether enhanced cue-P300 and CNV were only associated with trials showing the behavioral effect. 
An inherent variability of individual RTs that exists even in the final phase of the learning task allowed us to 
test two predictions:

(1) If the ERPs reflect contingencies (or contingency awareness) independently of the behavior, they should 
be present in contingency-aware subjects at all times in the late learning phase, i.e. also when comparing 
High with Low Probability trials associated with similar RTs (see methods: RT-matching procedure). We 
found that RT matching (within ± ΔRT, for details see Materials and methods) eliminated the enhancement 
of cue-P300 and CNV (previously found in contingency-aware group); the RT-matched ERPs showed no 
difference between conditions for all tested ΔRT values (cluster-mass permutation test; the cluster-related 
p-values ≥ 0.105, 0.422, and 0.475 for ΔRT = 5, 10 and 15, respectively, see also Supp. Table S20). Within 
our regions of interest, the ERPs obtained for RT-matched trials show a great deal of overlap (Fig. 3a). This 
suggests that the neural correlates of learning are determined by behavior, rather than by contingency (Δp) 
or contingency awareness alone.

(2) Furthermore, if the ERPs reflect contingencies (or contingency awareness) independently of the behav-
ior, they should be absent while comparing trials belonging to the same condition (High Probability), 

Table 2.  3-way ANOVA (type III sums of squares) on the LMM estimates of cue-P300 amplitudes. 
Independent variables as in the RT model.

Sum Sq Num. df Den. df F p

Condition 32.71 2 412.4 0.72 0.485

Trial 428.88 1 6795.7 19.00 < 0.001

Group 11.85 1 59.0 0.53 0.472

Condition:Trial 85.09 2 6799.0 1.88 0.152

Condition:Group 17.72 2 412.4 0.39 0.676

Trial:Group 196.60 1 6795.7 8.71 0.003

Condition:Trial:Group 241.89 2 6799.0 5.36 0.005

Table 3.  3-way ANOVA (type III sums of squares) on the LMM estimates of CNV amplitudes. Independent 
variables as in the RT and cue-P300 model.

Sum Sq Num. df Den. df F p

Condition 115.10 2 264.7 3.86 0.022

Trial 543.60 1 6790.8 36.45 < 0.001

Group 36.46 1 77.6 2.44 0.122

Condition:Trial 153.48 2 6795.2 5.15 0.006

Condition:Group 18.91 2 264.7 0.63 0.531

Trial:Group 277.14 1 6790.8 18.58 0.000

Condition:Trial:Group 167.97 2 6795.2 5.63 0.004
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Figure 3.  Both cue-evoked ERPs are related to behavioral optimization. (a) Visual explanation of the 
RT-contrasting and RT-matching procedure using Individual subject RTs. (b) Cue-ERPs from the final phase 
and contingency-aware subjects after RT-matching (left-hand side) and RT-contrasting (right-hand side). ERPs 
are plotted (grand average and SEM) within the previously used regions of interest for P300 (top row) and CNV 
(bottom row).
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but associated with different response times (see methods: the RT-contrasting procedure). Instead, we 
found a significant difference in cue-ERP amplitudes (cluster-mass permutation test, all cluster-related 
p-values < 0.01) between High Probability trials associated with fast and slow RTs. This effect was present 
in contingency-aware subjects in both task phases, but not in the unaware subjects (Supp. Figs. S9–S10). 
The resultant ERP pattern within our regions of interest bore a striking similarity to the original cue-P300 
and CNV (Fig. 3b; compare with Fig. 2a,b).

Together, these results demonstrate that both the enhancement of cue-P300 and the CNV are functionally 
related to anticipatory motor preparation that markedly reduces the RTs.

SLC differently affects target processing in contingency aware and unaware subjects
Last, we explored the effects of statistical learning on target processing and their dependence on contingency 
awareness. By examining the P300 response, we compared how the two groups responded to the predictable 
targets in the oddball-SL task versus randomly occurring targets from the oddball-control task. The analyses 
show learning-related changes over time and in specific brain regions.

The target-evoked P300 was present in both groups (Fig. 4a); we found no between-group differences with 
regard to the amplitudes elicited by random targets from the oddball-control task (cluster-mass permutation 
test; all p-values ≥ 0.399), standards (all p-values ≥ 0.416), or the differences between these two conditions (all 
p-values ≥ 0.484).

In the learning task, we focused on the most numerous, highly predictable targets (i.e., those occurring in the 
High Probability condition). The target-P300, defined as the amplitude difference between target and standard 
trials, became larger over time due to increased amplitudes elicited by targets over subsequent trials (Table 4; see 
also Supp. Fig. S3). The group factor did not significantly improve the LMM fit (Supp. Tables S10–S11); hence, 
contingency awareness did not markedly influence the scalp-recorded target-P300 amplitudes.

On the contrary, the neural sources of the P300 were influenced by contingency awareness. In the contin-
gency-unaware group, the primary sources of P300 in the control task were the cuneus (BA-19), anterior cingulate 
(BA-24), and superior temporal gyrus (BA-42), which together accounted for 50.9% of the P300-related signal 
variance. In the learning task, the primary sources of P300 were the cuneus (BA-19), precuneus (BA-7), and 
posterior cingulate cortex (BA-23). These three sources together accounted for 71.7% and 79.4% of the P300-
related signal variance in the initial and final phases, respectively.

In the contingency-aware group, in both tasks the primary sources of P300 were anterior cingulate (BA-24), 
precuneus (BA-7), and cuneus (BA-19). They accounted for 68.6%, 81.9%, and 82.6% of the P300-related signal 
variance in the control task, in initial, and final oddball-SL task phases, respectively.

The source-resolved activity attributed to precuneus showed a significant P300 component in both groups, 
tasks, and oddball-SL task phases (permutation tests; all p-values < 0.001; Fig. 4b). During the oddball-SL task, 
the ‘aware’ group additionally showed source-resolved P300 in the cingulate cortex (both phases’ p-value < 0.001); 
By contrast, contingencies influenced the ‘unaware’ subjects’ EEG by inducing an additional P300 component in 
the cuneus (both phases’ p-value < 0.001; remaining statistical results in Supp. Table S17).

In summary, precuneus activity contributed to the target-elicited responses independently of predictability 
and contingency awareness. The cingulate cortex and cuneus, on the other hand, were differentially activated, 
depending on contingency awareness.

Discussion
This study used two visual oddball tasks requiring speeded responses to target stimuli. Unbeknown to the 
participants, the stimuli sequence in one of the tasks included three types of target cues, allowing for statistical 
learning of cue-target contingencies  (SLC) and, consequently, utilizing them proactively to speed up responses. 
The order of stimuli in the other (control) task was random. Our central finding is that  SLC led to proactive 
behavior solely in subjects who gained explicit knowledge about those contingencies (contingency-aware). The 
contingency-unaware group did not optimize behavior during task performance, which suggests that contingency 
awareness is necessary for proactivity based on cue-triggered anticipation. Nonetheless, even in the absence of 
contingency awareness, we observed an alteration of brain responses to predictable relative to random targets 
and a better-than-chance group performance in a post-exposure forced-choice test. These two effects found in the 
unaware group are interpreted as implicit  SLC. Together, the results document that despite identical experimental 
conditions,  SLC may lead to different adaptations and that the scope of adaptations unlocked by implicit learning 
is limited relative to those accompanied by contingency awareness. The two qualitatively different outcomes of 
 SLC are discussed below.

Only the contingency-aware group shortened their RTs selectively to the predictable targets, evidencing  SLC. 
Learning was also evidenced by selective modulation of ERP responses to High Probability cues. Importantly, 
since all types of cues occurred equally often, the differentiation of cue-ERPs across conditions could not be 
attributed to occurrence  frequencies34,47,48. Note also that the neural measures failed to differentiate between 
Zero- and Low Probability cues, showing better alignment with the distinction between positive (Δp > 0) and 
negative (Δp < 0) contingencies than with the distinction based on target  probabilities49,50. The ERP effects con-
sisted of the contingent negative variation (CNV) and an enhancement of the cue-P300 in the High Probability 
condition. The presence of the CNV component indicates the role of anticipatory motor  preparation13,15,33. The 
group-specificity of both behavioral and neural effects suggests that proactive exploitation of cue-target contin-
gencies is only possible with contingency awareness.

At first, this conclusion may seem controversial given the well-documented preponderance and diversity of 
implicit statistical  learning6,51. However, as stated in the introduction, most paradigms assess statistical learning 
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by applying post-exposure measures and do not address the specific question of whether proactivity is achievable 
without contingency awareness. As pointed out by Dale et al.26, many claims about implicit anticipation during 
statistical learning tasks are ungrounded due to methodological issues (see  also52), while sound demonstra-
tions of anticipatory and predictive processing tend to correlate with explicit knowledge about the statistical 

Figure 4.  Statistical learning of contingencies influences the relative contributions of brain sources to 
target-evoked P300 potential. (a) ERPs (group average and SEM) elicited by standards and targets within the 
target-P300 ROI during the oddball-control task and two phases of the oddball-SL task. (b) Sources determined 
as the main generators of the target-P300; left-hand side: dipole density maps in horizontal and sagittal brain 
planes; right-hand side: source-resolved ERPs for standard and target trials. The presence of a source-resolved 
P300 component was examined (nonparametric permutation test; asterisks mark significant target vs. standard 
difference after Bonferroni-Holm correction).
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 regularities26,27. An implicit shortening of response times often attributed to anticipation is reliably observed 
in motor sequence learning paradigms. Unlike contingency learning explored in our study, those adaptations 
are rooted in procedural learning and persistent re-enactment of the regularities by the motor system. They 
involve a distinct neural circuity with a prominent role of the  cerebellum53 and may be less dependent on explicit 
knowledge than contingency  learning54. The relation between implicit or unconscious processes and proactive 
cognitive control is an active and hotly debated research  topic24,55–57. Several EEG studies claim to show signatures 
of anticipatory neural modulation—the CNV potential—due to implicit proactive  control36,38. Crucially, these 
studies explored the implicit acquisition of sequence timing, particularly the duration of inter-stimulus  intervals37. 
The anticipation of stimulus onset time may be qualitatively different from the anticipation of stimulus identity. 
During task performance, the distribution of inter-stimulus intervals translates into the distribution of intervals 
between sensory and motor responses, making a case for sensorimotor learning. By applying randomly jittered 
inter-stimulus intervals, we focused solely on identity-based anticipation that likely involves distinct neural 
mechanisms. Finally, the relation between  SLC and contingency awareness may also depend on other stimula-
tion parameters. As established by the long tradition of human conditioning  research1,58–61, when a temporal gap 
separates conditioned and unconditioned stimuli (equivalents of cue and target), behavioral adaptation requires 
contingency awareness and depends on hippocampal  integrity59,62–64. Implicit adaptations, on the other hand, are 
hippocampus-independent but require a partial overlap of the  stimuli55,59,65. Since our stimuli were temporally 
separated, the discussed finding is consistent with this line of research (see  also18).

Careful examination of the single-trial relationship between behavioral and neural indices of  SLC revealed 
that both cue-ERP effects occurred only on trials followed by relatively fast button presses. Hence both the CNV 
and the enhanced cue-P300 were linked to the behavioral adaptation and not the acquisition of knowledge 
per se. While the CNV is widely associated with anticipation and preparation –processes that speed up motor 
 responses12,13,33,43,44—the functional role of the enhanced cue-P300 in the context of  SLC has never been firmly 
 established4,41,42. It has been suggested that it reflects contingency awareness and may occur independently 
from the behavioral indices of  learning4,40. If so, the EEG measures could track  SLC regardless of whether the 
subject is able or willing to follow task instructions. On the contrary, our single-trial analyses demonstrated 
that the cue-P300 effect was present only when the High Probability cues were followed by relatively fast motor 
responses. These fast, anticipatory responses were mostly absent in the initial task phase but ubiquitous in the 
final phase. Yet, even in that final phase, the individual RTs were highly variable. The presence of relatively slow 
RTs occasionally occurring between the fast ones suggests that, at this stage, subjects already gained the ability to 
behave proactively but did not apply it in some trials—perhaps due to a temporary lapse of attention or decreased 
motivation. The absence of the cue-P300 effect in those trials strongly suggests that cue-P300 enhancement—
similarly to CNV—relates to proactivity.

Given the interpretation, our source analysis of the two cue-ERPs elucidates the neural substrates underpin-
ning two stages of proactive behavior. A two-stage process is consistent with a computational model proposed by 
Lieder and  Iwama11, consisting of a reactive recall of the cue’s relevance to the task goal (stage 1) and proactive 
preparation for the target-related action (stage 2). The cue-P300 and the CNV effects presumably reflect those 
reactive and proactive processing stages. Supporting this claim, the modulation of the cue-P300 originated mainly 
from precuneus—a region within the parietal cortex involved in a cued recall of learned  associations66–68, particu-
larly associations formed by sudden comprehension of abstract  relations69. The parietal cortex has already been 
implicated in reactive aspects of cognitive control as the anatomical structure supporting associations-mediated 
reactivation of task  goals10,70. Interestingly, also targets consistently evoked precuneal activity regardless of the 
contingencies or contingency awareness. Therefore, as a result of learning, the neural responses to cues seem to 
acquire some characteristics of target-related responses, which may reflect the cue-induced reactivation of target 
representation. This reactivation seems functionally relevant to the subsequent proactive preparation for targets, 
as corroborated by functional connectivity between the precuneus and a supplementary motor area facilitating 
fast responses in learning  tasks71. The CNV signifying anticipatory preparation for targets originated mainly 
from the posterior part of the anterior cingulate cortex (ACC), also referred to as the mid-cingulate  cortex72. This 
brain area is thought to implement motor control by ’translating abstract cognition and intentions to actions’73,74.

Learning also influenced the target-evoked responses of the contingency-aware group: the predictable targets 
elicited larger ACC responses than randomly occurring targets did. This activity could not be directly related to 
the RT speed-up as it was mainly observed at latencies exceeding the average RT. More likely, the ACC activity 
reflects updating the mental model of cue-target contingencies or evaluating the target as an outcome of learning-
induced expectations, which provides the basis for choosing an optimal behavioral  strategy47,75–77. While ACC has 
most widely been associated with prediction error  signals76,78, signaling confirmed predictions is also important 
as a complementary side of the cognitive cycle that enables behavioral optimization on a trial-to-trial  basis79.

Table 4.  3-way ANOVA (type III sums of squares) on the LMM estimates of the target-P300 potential. 
Stimulus (targets/standards in High Probability condition), Trial—continuous variable based on event 
latencies.

Sum Sq Num. df Den. df F p

Stimulus 1005.47 1 72.0 111.97 < 0.001

Trial 50.90 1 8698.2 5.67 0.017

Stimulus:Trial 100.68 1 8698.2 11.21 0.001
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Although the data emphasize the role of the precuneus and the ACC in the proactive exploitation of contin-
gencies, additional brain structures also showed learning-related activity, albeit less robust (see Supp. Table S13). 
Despite the converging evidence from prior studies showing hippocampal involvement in contingency-aware 
 subjects39,45,46, and its relevance to statistical learning in  general1,80, our analyses did not reveal this source. Given 
the limited sensitivity of EEG to detect deep brain sources, this absence is not surprising. The hippocampus, 
however, forms connections with the precuneus, and their functional connectivity is known to increase during 
the presentation of High Probability  cues81. Therefore, the precuneal-cingular network involved in  SLC-induced 
proactivity is likely to receive contributions from the hippocampus.

The contingency-unaware subjects did not show online behavioral adaptation to statistical regularities: their 
RTs to predictable targets did not decrease. Consistent with the discussed relatedness of cue-elicited ERPs to 
anticipatory behavior, this group’s neural responses to cues also remained unchanged. The combined results 
of the questionnaire, response time measures, and cue-evoked brain potentials suggest that subjects lacking 
contingency awareness were unable to proactively use the target cues to facilitate behavior. The above measures 
alone provide no evidence of learning. In particular, they do not demonstrate implicit statistical learning. How-
ever, expanding on previous studies that used this paradigm but did not analyze target-related  responses40,41, 
we found that exposure to contingencies affects neural responses to predictable targets: the activity in visual 
association areas became larger for predictable than for randomly occurring targets. A similar result—i.e., greater 
activations within visual association areas for predictable than for random visual sequences without regular-
ity awareness—has been reported in an fMRI  study82. Although traditionally, any claim about learning would 
require behavioral evidence, changes in brain activity that reflect environmental regularities have already been 
established as a measure of implicit statistical learning, even when accompanied by only weak or no behavioral 
 adaptations82–84. Furthermore, when neural measures are not available, it is common to assess implicit statisti-
cal learning based on post-exposure memory tests, e.g., completion tasks, familiarity judgments, and 2AFC 
 procedures2,51,85. Indeed, we found that despite the lack of proactivity, the unaware group scored above chance in 
a post-exposure alternative-choice test, i.e., when prompted to guess which stimulus usually preceded the target 
(note that this was after the subjects claimed complete randomness of the sequence). Together, the modulation 
of target-evoked brain responses within visual association areas and the implicit bias in an alternative-choice 
test can be taken as an indication of implicit  SLC. Importantly though, this implicit  SLC appears insufficient for a 
proactive exploitation of contingencies. Hence, instead of assessing the ability to learn contingencies in zero–one 
terms, our study provides a deeper understanding of the functional limits and qualitative differences between 
implicit and explicit modes of  SLC

18.
What neural processes lead to these differential outcomes and what factors influence the learning mode still 

need to be clarified. After all, both groups were exposed to the same conditions. Implicit acquisition of statistical 
regularities is often explained by associative theories of learning, which entail an incremental strengthening of 
associations between co-occurring stimuli and stimulus–response  pairs58,60. In neurophysiological terms, these 
processes relate to Hebbian learning mechanisms; they are largely automatic and require repeated exposure over a 
prolonged time. Consistent with the notion that statistical learning takes  time4,86, our 15 min long task might have 
induced associative processes in the contingency-unaware group but captured only their initial phase. Alterna-
tive theories on human contingency learning postulate inferential reasoning as the driving force of  learning60,87. 
Inferential reasoning, consisting in formulating and validating hypotheses, is a cognitively controlled process 
that leads to explicit knowledge about  contingencies88–90, possibly through a sudden  insight69,86. In contrast to 
associative processes, it may occur fast, taking only a few trials to form the initial hypothesis. The debate between 
proponents of associative and inferential theories is  ongoing89,91. The dissociation of outcomes in our study sug-
gests that inferential processes might have been the driving force of learning in the contingency-aware group. 
In contrast, associative processes might have contributed to the outcomes of the contingency-unaware group.

A final comment relates to the outcome of our supplementary classification of individual subject RTs. A 
general advantage of gaining contingency awareness is the flexibility of the acquired  behavior18. Contingency 
awareness offers the possibility to use a proactive strategy, and not all of our subjects decided to use it. Note that 
despite applying the speed pressure, the explicit goal of the oddball tasks was to respond to targets and refrain 
from responding to other stimuli. During the questionnaire, a few contingency-aware subjects spontaneously 
reported that they ignored the High Probability cues and focused solely on targets because they realized that the 
predictive relation is not 100% reliable. These subjects seem to consciously refrain from the proactive strategy 
due to a strong bias toward accuracy in situations involving speed-accuracy tradeoff.

In conclusion, our behavioral and electrophysiological results contribute to the debate on the mechanisms 
of statistical learning about cue-target contingencies and suggest functional limits of implicit  SLC. Although 
neural activity within the visual cortex and post-exposure behavioral measures demonstrated implicit learn-
ing, these presumably associative processes were insufficient to drive proactive behavior. Proactive utilization 
of cue-target contingencies entails anticipatory motor preparation triggered by specific cues and involves brain 
regions related to cognitive control. Importantly, this behavior seems to be non-automatic, flexible, and enabled 
by contingency awareness.

Materials and methods
Participants
Forty-eight adults (age: 24.4 ± 4.8 (M ± SD), 54% female, 100% right-handed) participated in the study. All signed 
an informed consent and received 20€ remuneration. The experimental procedure was approved by the ethics 
committee of the Hannover Medical School, and all methods were performed in accordance with the Declara-
tion of Helsinki.
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Tasks and stimuli
During one EEG session, participants performed two oddball tasks (oddball-SL and oddball-control; see below) 
under speed pressure. In the beginning, subjects were presented with five visual stimuli, from which one was 
indicated as a target. The subjects were instructed to attend to a sequence of these stimuli and to press a but-
ton every time they saw the target. After every block of trials, subjects were given feedback on their average 
response time (RT) and encouraged to respond faster. Blocks were separated by a break of minimum 30 s. Two 
task versions (with colors and with shapes, see Fig. 1a) were used, so that each subject could perform one task 
(e.g., oddball-SL task) with color stimuli and one (e.g., oddball-control) with shape stimuli. The assignment of 
task versions and the task order were balanced across participants (see Supp. Table S22 for individual subject 
information including the assignment). Since our preliminary analyses did not reveal influence of task version 
on the emergence of contingency awareness (Supp. Fig. S4), on RT-based measures of  SLC (Supp. Fig. S5), or on 
the ERP indices of contingency learning (Supp. Tables S4 and S7; Supp. Fig. S6), the data from both task ver-
sions were combined. The categories assigned to individual stimuli included standards, targets, and three devi-
ants. Their occurrence frequencies (expressed as a percentage of the entire sequence) were: 68.6% (standards), 
8.6% (targets), and 7.6% (each deviant). The assignment of stimulus categories to specific colors or shapes was 
randomized for each participant.

The oddball-SL task was modeled on Jost’s  paradigm41. The stimulus sequence was probabilistic, i.e., the 
occurrence of targets was governed by contingencies and therefore allowed for statistical learning. The sequence 
consisted of a continuous succession of short stimuli series. Every series began with 1–5 standards followed by 
one deviant—here functioning as a cue. Each cue was associated with a different probability of being followed 
by a target (‘transitional probability’, TP), providing the basis for three within-task conditions: High-, Low-, and 
Zero Probability (Fig. 1b). The transitions between series were inconspicuous. There were seven blocks, each 
consisting of 24 series (8 per cue). Both the TPs and TP-derived contingency values (Δp) had been widely used to 
describe predictive relations, although different research fields have a proclivity to use either one of them. Here, 
we report both. The contingency value for the High Probability cue was determined as the probability of it being 
followed by a target (7 out of 8 times in a block) minus the probability of the target appearing without that  cue49,50 
(i.e., twice per block for the Low Probability and never for the Zero Probability cue): �pHP =

7

8
−

2

16
= 0.75. 

Analogous calculations for the Zero- and Low Probability cues yield Δp =  − 0.19 and Δp = − 0.56, respectively. 
Initial and final phases were defined as Blocks 1–3, and 5–7, respectively. Directly after this task, subjects were 
surveyed to determine whether they became aware of the contingencies. Subjects were classified as having 
explicit knowledge (contingency-aware) if they reported the predictive relation between a High Probability cue 
and the target. Subjects who were unable to report any regularity and claimed that the sequence was random 
(contingency-unaware) were asked to guess which stimulus usually preceded the target (see Supp. Fig. S7).

The oddball-control task did not include contingencies. It served to obtain measures of a typical P300 
 component47, i.e., elicited by rare and randomly occurring targets. It was identical to the oddball-SL task except: 
(1) the stimuli were presented in a randomized order while avoiding immediate target repetitions, and (2) the 
task was limited to 3 blocks (equal to one phase of the oddball-SL task).

The stimuli were generated using Psychophysics Toolbox PTB-3 (version 3.0.1492) running under Matlab 
(version 9.6.0, R2019a) and displayed on a 1920 × 1200 pixel View Pixx LCD monitor (VPixx Technologies Inc.) 
with a 120 Hz refresh rate. Subjects were seated at a monitor-to-forehead distance of about 1.35 m. Stimulus 
size spanned 2 degrees of visual angles. The stimuli were displayed for 200 ms, with a varying inter-stimulus 
interval of 800–1400 ms.

EEG data acquisition and processing
Electroencephalographic signals (EEG) were recorded using BrainAmp MR + amplifiers (Brain Products, Munich, 
Germany) and 64 active Ag/AgCl electrodes mounted in standard, international 10/10 system caps (EASYCAP 
GmbH, Germany). Impedances were kept below 15 kΩ. The analog signal was filtered online with a low cutoff 
frequency of 0.016 Hz, a high cutoff frequency of 250 Hz, and digitized at a sampling rate of 1000 Hz.

EEG signal preprocessing was performed using EEGLAB  toolbox93 and custom-written Matlab scripts. The 
following preprocessing steps were performed on individual datasets (2 datasets per subject, one per task). Data 
were down-sampled to 250 Hz and referenced to the average of all channels by applying a multi-stage robust 
referencing scheme. This scheme (‘PREP pipeline’) minimized the influence of noisy channels  (see94 for details). 
An average of 0.5 (SD = 0.7) channels per dataset was identified as noisy. These channels and the original online 
reference (FCz) were later interpolated.

Independent component analysis (ICA) was performed to separate brain activity from EEG  artifacts95,96: ICA 
weights were trained on a portion of the signals that were high-pass filtered (0.5 Hz cutoff frequency, zero-phase 
Hamming-windowed sinc FIR filter), segmented (1 s segment duration), and automatically cleaned (EEGLab 
joint probability method, threshold = 2.5 SD). The ICA results were applied to data high-pass filtered with 0.15 
Hz cutoff frequency (FIR filter as above). Independent components (ICs) classified with more than 90% prob-
ability as artefactual or less than 5% probability as brain-related were automatically rejected, and those classified 
with more than 90% probability as brain-related—automatically retained (EEGLAB plugin ICLabel ver. 1.297). 
The decision about the remaining components was based on visual inspection. Recordings were epoched from 
− 200 to 900 ms relative to stimulus onset and baseline-corrected (baseline from − 200 to 0 ms). Target trials lack-
ing a button-press response within 1000 ms (misses) and non-target trials followed by a button-press response 
(false alarms) were excluded. Finally, an average of 13.1% (SD = 4.1%) epochs per dataset was rejected based on 
EEGLAB data cleaning routines (joint probability criterion: 4 SD; abnormal trend detection: max slope of 50 
μV per epoch; visual inspection).
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Behavioral data analysis
In every dataset, we calculated a hit- and a false-alarm score. Hits were defined as target trials on which a button-
press response was given within 1000 ms after the target presentation. The hit score was the percentage of hits 
within all target trials. By analogy, the false-alarm score was the percentage of false alarms within all non-target 
trials. Due to ceiling accuracy, the sensitivity index (dʹ) was not determined. The response time (RT) was defined 
for hits as the latency between the target presentation and the subsequent button-press response.

ERP analyses
We focused on two cue-related ERPs: (1) a modulation of  P30041, and a contingent negative variation  (CNV13). 
These ERPs have different latency and distribution over the scalp. To obtain the measures of the cue-P300, the 
ERP amplitudes were averaged within a region of interest (ROI) based on Jost et al.41: 300–600 ms post-stimulus 
latencies at five parieto-occipital sites (Pz, POz, PO3, PO4, Oz). The ROI for the CNV included the final 300 ms 
of an epoch (600–900 ms post-cue latencies) and central sites (FCz, Cz, C1, C2, CPz).

We also investigated the influence of contingency learning on target-related P300. It is known that the P300 
latency and topography may vary depending on experimental  conditions47. To account for the specificity of our 
5-stimulus oddball design and to determine an appropriate ROI, we performed a cluster-mass permutation test 
on combined group data from the control task. The P300 was prominent within 300–700 ms post-target latencies 
and at parieto-occipital sites (C1, Cz, C2, CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, P4, PO3, PO4, POz). This 
ROI was later applied to individual group data. The control task provided measures of P300 related to random 
targets, while the High Probability condition from the oddball-SL task provided measures of P300 related to 
predictable targets.

Matching and contrasting cue-related ERPs by RTs
88% of the High Probability cues and 25% of the Low Probability cues were followed by a target. If subjects 
responded to these targets, the cues could be associated with a specific RT. We examined the relation between 
ERPs elicited by these cues and the associated RTs using two complementary approaches:

The RT-matching procedure yielded pairs of Low and High Probability cues associated with similar RTs (i.e., 
RT difference smaller than a specified ΔRT). The aim was to compare cue-related ERPs associated with different 
contingencies but similar behavior. Pairs were created within a given group and task phase (for an illustration of 
the concept and an example of RT-matched pairs, see Fig. 3a). To make sure that the outcomes are not specific to 
any a priori defined ΔRT value, the procedure was repeated three times (for ΔRT = 5, 10, and 15 ms). Priority was 
given to within-subject pairs. If multiple matching possibilities existed, trials in closer temporal proximity were 
selected to form a pair. After exhausting within-subject matching possibilities, matching was performed between 
different subjects of the same group. On average, 67% (SD = 15) of the resulting pairs were within-subject pairs. 
Since fewer Low- than High Probability cues were followed by targets (6 vs. 21 per subject within a task phase), 
the maximum number of possible pairs was limited by the number of Low Probability trials. This amounted 
to 132 and 156 for the ‘aware’ and ‘unaware’ subjects, respectively. Due to EEG data cleaning that limited the 
number of available pairs, and the requirements of the RT-matching procedure, the final number of trial pairs 
ranged—depending on task phase and ΔRT (‘aware’: 94–111; ‘unaware’: 14–127).

The RT-contrasting procedure yielded pairs of High Probability cue trials associated with distinct (i.e., ‘fast’ 
and ‘slow’) RTs. The aim was to compare cue-ERPs associated with the same contingency but different behavior. 
The procedure was performed within a given group and task phase. To define the ‘fast’ and ‘slow’ responses, the 
distribution of RTs within the respective data portion was divided into three equal parts (see Supp. Table S21, 
Fig. S8). ‘Fast’ RTs were those below the 33.3 percentile of the distribution, whereas ‘slow’ RTs were those above 
the 66.6 percentile. The pairs consisted of two High Probability trials—one associated with a slow RT and one 
with a fast RT. Again, priority was given to within-subject pairs. The excess of trials (occurring whenever ‘fast’ 
and ‘slow’ trials of a given subject were not equinumerous) were subsequently used to create between-subject 
pairs. On average, 68% (SD = 19) of these pairs were within-subject pairs. By design, 21 High Probability within 
each task phase were followed by a target. Summing across subjects, this amounted to 462 (‘aware’) and 546 
(‘unaware’) High Probability trials. These trials were further split into three speed categories, so the number of 
potential pairs was reduced to one-third. Due to EEG data cleaning that limited the number of available pairs, 
the procedure yielded 48 (‘aware’, initial phase), 52 (‘aware’, final phase), 70 (‘unaware’, initial phase), and 68 
(‘unaware’, final phase) RT-contrasted trial pairs.

Source estimation
To perform EEG-based source estimation, we followed standard practices of the dipole modeling  method95,98. 
Briefly, the technique used 3D coordinates of scalp electrodes and a head model (here: three-shell boundary 
element model of the MNI standard adult brain) to determine locations of equivalent current dipoles that best 
explain the scalp distribution of ICA-derived independent components (ICs). ‘Plausible’ dipoles (see below) were 
clustered based on their spatial locations. The activation of each IC was back-projected to the scalp. Summed IC 
projections originating from a given cluster were root-mean-squared across all channels, yielding source-resolved 
ERP traces. The coordinates of a cluster centroid were used to assign a brain region to each source. The set of all 
clusters is referred to as a ‘source model’.

We constructed two source models: MODEL 1—to investigate the brain sources of cue-evoked ERPs—
therefore based on contingency-aware subjects’ data from the oddball-SL task (Supp. Table S12); MODEL 2—to 
investigate the influence of  SLC and contingency awareness on brain sources of the target-P300—therefore based 
on datasets from all subjects and both tasks (Supp. Table S15). Every IC was fitted with either a single dipole 
(EEGLAB plugin DIPFIT 2.399), or bilateral dipole pair (fitTwoDipole  plugin100). The quality of the fit was 
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assessed by calculating residual variance as defined  in101). Plausible dipoles, i.e., located within the brain volume 
and associated with residual variance smaller than 15% (single dipoles) or 35% (bilateral dipoles) were included 
in the model (i.e., 52% and 53% of all available ICs in the case of MODEL 1 and MODEL 2, respectively). The 
3D coordinates of the dipoles were used to run a k-means clustering algorithm (number of clusters set to 16 as 
an average number of clusters per dataset; threshold for outliers = 3 SD).

The subsequent steps were performed on the source (i.e., cluster) level. Each source’s contribution to the 
relevant ERP component was assessed by calculating the ‘percent of variance accounted for’ (PVAF,101), which 
informs how much EEG signal variance across channels could be explained by a given source relative to the 
remaining sources. The signal was defined in MODEL 1 as the difference in a cue-evoked ERP between the High 
and Low Probability conditions. We used two temporal windows: 400–650 ms and 650–900 ms, as dominated by 
the cue-P300 and the CNV, respectively). In MODEL 2, the signal was defined as the difference between targets 
and standards in a 300–700 ms time-window (corresponding to the target-P300 time window). Since PVAF is 
determined for all available sources, regardless of their role in generating a given ERP, focusing on a few sources 
associated with the highest PVAF is a common  practice98,102. Here, the three sources associated with the high-
est PVAF were defined as primary sources. We reported cumulative PVAF for the three primary sources (main 
manuscript) and PVAF for individual sources (Supp. Table S13, S16). Due to the non-additive nature of this 
measure, the cumulative PVAF is different (usually smaller) than the corresponding sum of the individual PVAFs.

Statistics
Linear mixed-effects models were applied to single-trial data to analyze learning-related changes over time (i.e., 
RT and ERP data in the oddball-SL task). Nonparametric permutation-based approaches were used for the 
remaining exploratory analyses.

Linear mixed-effects models (LMM) are recommended for EEG analyzes due to the hierarchical organization 
inherent in the  data103. Moreover, LMM fitted to single-trial data can reveal within-task changes over time, mak-
ing them particularly useful for studying learning-related  processes104. Here, this approach was used to analyze 
single-trial RTs and ERP measures from the oddball-SL task. The distribution of RTs was non-normal, showing 
a long upper-side tail. Consequently, log-transformed RTs were used. LMMs were fitted using R package  lme4105. 
In all models ’subject’ was the contextual grouping variable. All categorical variables (e.g. ‘group’, ’condition’) were 
dummy coded. The ‘unaware’ group was used as a reference level within ‘group’, and the Low Probability condition 
as a reference level within ‘condition’. All models used ’trial’ as a fixed-effect continuous predictor, representing 
the task’s temporal dimension. The ‘trial’ variable was scaled to have values between 0 and 1 (corresponding to 
the first and the last stimulus in a task, respectively).

Our research question was whether the responses (either RTs or ERPs) undergo differentiation between the 
contingency-related conditions over the experimental time and whether we observe group differences in this 
respect. Therefore our initial full models included ‘condition’, ‘trial’, and ‘group,’ as well as their interactions as 
fixed effects. The initial random effects were specified as random intercepts across subjects and random slopes 
for condition and trial over subject (R syntax: (condition*trial | subject)), but these models did not converge. 
The most complex models that did converge included random intercepts over subjects and random slopes for 
condition over subject (R syntax: (condition | subject)). Model parameters were determined with the maximum 
likelihood method, and Satterhweite approximation was applied to estimate degrees of freedom and to obtain 
p-values. The final model structure was decided by a step-wise reduction in model complexity, first for random 
effects and then for fixed  effects105. We identified the most parsimonious model that did not produce a significant 
drop in the model goodness-of-fit as assessed by the likelihood ratio test (LRT). The optimal model’s plots of 
residuals showed no violations of linearity or  homoskedasticity106,107. Whenever model residuals deviated from 
normality, the data was mildly trimmed  (see106 and Supp. Information). This critically revised optimal model is 
referred to as the final model. After calculating degrees of freedom by Satterthweite’s approximation method, the 
final model was subjected to analysis of variance (ANOVA). For further details, see Supp. Information.

A cluster-mass permutation test was used as a data-driven approach to analyze ERP differences beyond the 
predefined  ROIs108. These tests (as implemented in the Mass Univariate ERP  Toolbox109) were applied to:

(1) examine cue-ERP differences between High- and Low Probability conditions after RT matching (separately 
for each group and oddball-SL task phase);

(2) examine cue-ERP differences within the High Probability condition after RT contrasting (separately for 
each group and oddball-SL task phase);

(3) determine a region of interest for target-P300 (using combined group data from the oddball-control task)
(4) examine between-group differences in the ERP amplitudes elicited in the oddball-control task.

As a recommended practice to reduce the number of t-tests109, data were down-sampled to 100 Hz and limited 
to 100–900 ms post-stimulus latencies. 10,000 permutations were used, and neighboring data points with t-value 
exceeding a threshold corresponding to an alpha level 0.01 were clustered. Summed t-values within each cluster 
constituted the cluster-level statistics. Clusters that fell within the extreme 1% of the surrogate distribution (two-
tailed test) were considered to signify a difference between experimental conditions. Thus the weak family-wise 
error rate (FWER) was controlled at a 0.01 level.

Data availability
Data obtained from the statistical learning task (oddball-SL) and used in this article are available in the Open 
Science Framework repository: https:// osf. io/ mzxju/? view_ only= 2c9a3 b9692 2a4a9 28a6c ca8cc a87f6 a1.

https://osf.io/mzxju/?view_only=2c9a3b96922a4a928a6cca8cca87f6a1
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