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Highlights
Crossmodal plasticity is a textbook ex-
ample of the ability of the brain to reorga-
nize based on use. In the auditory
system, crossmodal plasticity is evident
in all degrees of auditory deprivation
and may be reversed in some cases of
adult-onset hearing loss.

Neither developmental nor adult
crossmodal plasticity appear to involve
extensive reorganization of structural
connectivity. Instead, they typically in-
volve strengthening and weakening of
existing connections, often top-down
heteromodal projections.
Crossmodal plasticity is a textbook example of the ability of the brain to reorga-
nize based on use. We review evidence from the auditory system showing that
such reorganization has significant limits, is dependent on pre-existing circuitry
and top-down interactions, and that extensive reorganization is often absent.
We argue that the evidence does not support the hypothesis that crossmodal
reorganization is responsible for closing critical periods in deafness, and
crossmodal plasticity instead represents a neuronal process that is dynamically
adaptable. We evaluate the evidence for crossmodal changes in both developmen-
tal and adult-onset deafness, which start as early as mild–moderate hearing loss
and show reversibility when hearing is restored. Finally, crossmodal plasticity
does not appear to affect the neuronal preconditions for successful hearing resto-
ration. Given its dynamic and versatile nature, we describe how this plasticity can
be exploited for improving clinical outcomes after neurosensory restoration.
The auditory system is a model system
for neurosensory restoration with
neuroprostheses, and the dynamic
and versatile nature of crossmodal plas-
ticity can be exploited clinically for im-
proving the outcomes of neurosensory
restoration.
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Crossmodal plasticity in the auditory system
Crossmodal plasticity (see Glossary) is an adaptive change in the drive of neurons from one
(deprived) sensory input towards another (non-deprived) sensory input; in other words, it is a
form of between sensory systems (intermodal) plasticity [1]. Crossmodal plasticity represents a
textbook example of the capacity of the brain for plastic changes.

In early studies in animal models, massive crossmodal visual takeover of the auditory cortex has
been found when early deafness was combined with aspiration of the auditory midbrain: such
combined intervention led to reorganization of anatomical inputs to the thalamus and large-
scale remapping of the auditory cortex by visual inputs [2,3]. These studies probably demon-
strated the maximal possible functional adaptation of the auditory cortex to novel input. What
was subsequently often overlooked is that this extensive reorganization was made possible by
aspiration of the auditory midbrain that allowed the visual afferents to target auditory thalamus
(in addition to visual thalamus) during development. That is, anatomical rerouting of visual infor-
mation to the auditory thalamus (that does not normally accompany sensory deprivation) was a
precondition for this massive reorganization. In the case of auditory deprivation, many textbooks
subsequently suggested that the entire auditory cortex becomes a battlefield between sensory
systems, and each of its areas can be recruited for a new sensory function (Figure 1). This is
often considered to be a key reason for the developmental critical periods for sensory restoration:
such 'colonization' of the auditory systemwould preclude processing of auditory inputs after neu-
rosensory restoration, for example via cochlear implants. Therefore, such crossmodal reorganiza-
tion would be a key reason why critical developmental periods close. This has important clinical
consequences: to prevent fostering this effect it was traditionally recommended not to use visual
communication (sign language) before cochlear implantation. However, as our review will show,
the aforementioned concept of massive crossmodal reorganization and its negative influence is
not consistent with recent findings and requires modification.

We propose that crossmodal reorganization is a dynamically modified process initiated already in
mild or unilateral hearing loss continuing into complete deafness, and occurs both in congenital
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Glossary
Crossmodal plasticity: a change in
properties of neurons leading to
stronger responsiveness to stimuli of the
non-deprived modality. In the present
text, the term 'crossmodal' is reserved
for conditions with hearing loss. This
could refer to structural reorganization
which involves formation of new fiber
tracts, or functional reorganization
referring primarily to changes from latent
unmasking of existing pathways.
Heteromodal inputs: inputs to a given
sensory area originating from another
modality; namely visual or
somatosensory inputs into the primary
or secondary auditory cortex.
Multimodal areas: cortical areas that
are responsive to stimulation via more
than one modality; the neurons in these
areas can even be non-responsive to
stimulation from a single modality.
Multimodal responses are classified into
subadditive, additive, and superadditive
depending on the amount of change
caused by adding another modality.
Multimodal reorganization/
plasticity: a change in the properties of
neurons owing to multimodal stimulation
in subjects without sensory deprivation.
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and adult-onset hearing loss (albeit with significant differences). It is a primarily a top-down driven
process that exploits pre-existing neuronal connections. In essence, we argue, crossmodal reorga-
nization is not detrimental for neurosensory restoration; instead, it is compensatory and can be used
to enhance communication before therapy or aid in enhancing real-world speech perception.

Crossmodal effects in deafness
Crossmodal 'supranormal' enhancements of visual and somatosensory modalities have been ex-
tensively documented in subjects that were deaf from childhood [10–18]. The extensively studied
visual effects have been related to enhanced visual motion detection and localization abilities
[12,19–23], better visual change detection [24], or faster reactions to visual stimuli in deaf subjects
[25,26]. However, not all visual functions show such supranormal performance [27]: for example,
there was no change in visual acuity, brightness discrimination, contrast sensitivity, or visual mo-
tion direction sensitivity. Predominantly those functions that the visual and auditory systems have
in common (e.g., localization, movement detection, and change detection, namely 'supramodal'
functions [28]) have the capacity to become compensated by crossmodal plasticity. This speci-
ficity of crossmodal reorganization raises the question of the extent and limits of reorganization
of the brain with respect to crossmodal plasticity.

In developmental deafness, in both humans and animal models, enhanced visual spatial localiza-
tion and visual movement detection are associated with cortical auditory areas underlying local-
ization and movement (congenitally deaf cats, CDCs [28]; early deafened cats [29]; and
humans [23]). In humans, face processing was observed in the temporal voice area of prelingually
deaf humans [30]. Auditory cortex contribution to face processing was also noted in postlingually
deaf adults [31]. Given these findings, it appears that crossmodal reorganization switches the
sensory (but not behavioral) roles of the auditory cortex [23,28,29]. Supporting this, a recent
human study emphasized the overlap of the crossmodally reorganized region with the previously
observed region of auditory motion detection in hearing subjects [32]. This is compatible with
a change in the driving sensory input during crossmodal reorganization – from auditory to visual –
but the change principally preserves the subsequent corticocortical processing.

The normal auditory system, characterized by exceptional timing precision, provides key 'calibra-
tion' timing information to other sensory systems (similarly to the way the visual system is key for
spatial information owing to its high spatial acuity) [33,34]. Indeed, in cases of conflict in timing,
hearing can 'override' visual information (e.g., auditory capture effect [35,36]), whereas vision sim-
ilarly overrides hearing in spatial location discrepancy (e.g., the ventriloquist effect [37]). Therefore,
visual and somatosensory temporal processing are negatively affected by deafness [33,38]. It is
interesting to note that deaf individuals, when tested under well-controlled conditions, may also
infer timing properties from spatial cues, but they only perform well in these situations if both
are correlated [39]. Auditory feedback of motor actions through secondary auditory cortex has
also been demonstrated to be key for action timing [40]. Consequently, hearing loss may have
adverse effects on the spared sensorimotor functions.

Causality and specificity in crossmodal reorganization
Causal evidence of crossmodal reorganization is difficult to obtain. Studies that directly test the
causality of crossmodal reorganization have been conducted primarily in animal models where in-
vasive studies are feasible, for instance in the CDC, an important model of pediatric congenital
deafness [41–43]. CDCs show supranormal performance in visual localization and visual motion
detection compared to normal hearing cats [28]. Using cooling deactivation of specific auditory
areas, activity in these areas can be reversibly silenced and behavior can be assessed to test
for potential causal links between deactivated areas and their behavioral functions. Regions
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Figure 1. Schematic illustration of the approximate locations of sensory brain areas in the cat and their reorganization in deafness. Color key: blue, visual;
red, auditory; green, somatosensory; orange, motor; grey, association areas. A mixture of colors at sensory borders (that appear as violet, light brown/golden, and deeper
green) depicts bimodal responsiveness (~two colors). (A) The area of the anterior ectosylvian sulcus (AES), together with areas corresponding to human insular cortex [4].
The ectosylvian sulcus (divided into the dorsal area, ED; intermediate area, EI; and ventral area, EV) corresponds to human superior temporal gyrus [5]. Feline prefrontal
cortex is likely multisensory based on tracer studies [6]. Rostral lateral sulcus (rLS) and/or AES allow multisensory integration in the superior colliculus [7]. The 'parietal
association cortex' comprises two separate areas within Brodmann area 7 [8,9]. Visual responsiveness was observed in the posterior belt not only in ED [5] but also in
DZ. Auditory and visual responses have been described around the cruciate sulcus in M1. Visual responses and auditory responses were reported in the pericruciate
association cortex, shown here as grey circles within the motor cortex (orange). Cingulate cortex on the medial hemisphere and ventral limbic areas (entorhinal cortex

(Figure legend continued at the bottom of the next page.)
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found to be subserving supranormal visual performance were the posterior auditory field and
dorsal auditory cortex (dorsal zone), whereas the primary auditory field A1 and the anterior
auditory field (AAF) were not involved [28]. The CDC replicates crossmodal effects observed in
humans and allows exact identification of the cortical regions responsible for the behavioral
effects. Taken together, the CDC data and the aforementioned human studies indicate that
crossmodal plasticity shows a strict areal specificity and that crossmodal plasticity switches the
sensory but not behavioral roles; in other words, supranormal visual behavior in deafness is
subserved by auditory cortical regions that underlie the same auditory behavior.

Areas involved in this crossmodal plasticity, when studied using retrograde tracers to reveal their
anatomical connections (fiber tracts), generally showed only a small percentage of new (ectopic)
connections to non-auditory areas. That means that the connectivity patterns to other sensory
systems were similar for CDCs and hearing cats, and only individual connection strengths were
changed in CDCs (dorsal cortex [44] and posterior auditory field [45]; later deafening in cats is ad-
dressed in [46,47]). The overall effect size of ectopic connections (which were a small percentage
of all connections) did not explain the behavioral outcomes of supranormal visual motion detec-
tion and visual localization ability in CDCs. The few ectopic projections observed are unlikely to
be a consequence of new axonal sprouting targeting new cortical areas, but instead may repre-
sent developmental exuberant projections [48] that are normally pruned by experience but were
preserved in congenital deafness [44,49]. These exuberant connections are often formed be-
tween anatomically bordering areas and may provide these with a higher susceptibility to
crossmodal change than distant areas. The data are not completely consistent with this concept
only in the anterior auditory field AAF of early deafened cats, where more anatomical reorganiza-
tion was observed [47]. However, area AAF is special because of the large number of somatosen-
sory areas and fibers closely neighboring it, which are potential candidates for tracer pickup and
require further study.

However, this does not mean that there is no effect of congenital auditory deprivation on the au-
ditory cortex (reviewed in [43]). Two consequences of deafness in CDCs are relevant in the pres-
ent context: (i) a specific reduction of corticocortical interactions [50], and (ii) reduction in
functional intrinsic cortical connectivity between supragranular and infragranular layers [51].
These deficits could be related to a specific reduction of top-down interactions between second-
ary and primary auditory cortices [52]. Infragranular layers are the source of top-down interac-
tions. Indeed, dystrophic effects (reduced thickness) were observed in infragranular and
granular layers but not in supragranular layers in A1, dorsal zone (DZ), and secondary auditory
cortex (A2) [53]. Reduced activity in infragranular layers of area A1 has also been observed
[54]. This all suggests that top-down interactions (that are known to develop after bottom-up in-
teractions [55]) are more sensitive to developmental alteration of hearing than are bottom-up in-
teractions. A change in balance between bottom-up and top-down interactions may play an
important role in crossmodal plasticity [53,56]. Reduced functional connectivity (measured by
spike-field coherence) between superficial and deep cortical layers appears to be a key element
responsible for integration of cortical column and contributes to the reduced top-down interac-
tions between primary and secondary cortical areas in deafness [51]. Taken together, the cortical
column becomes reorganized in congenital deafness, potentially to change the balance between
thalamocortical and corticocortical inputs towards corticocortical inputs. It is important to
and parahippocampal gyri) are not shown. (B) A putative cortical map under the assumption of massive crossmodal reorganization in congenital deafness. (C) An
approximate representation of actual cortical organization in congenitally deaf cats according to the evidence reviewed in the text. Abbreviations: A1, primary auditory
field; A2, secondary auditory field; AAF, anterior auditory field; In, insular cortex; M1, primary motor cortex; PAF, posterior auditory field; S1, primary somatosensory
cortex; Te, temporal cortex; VAF, ventral auditory field; VPAF, ventro-posterior auditory field.
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emphasize that both the thalamic input and bottom-up interactions were not eliminated in CDCs
[52] or posterior auditory field [50], explaining why auditory responsiveness is preserved when
stimulated with a cochlear implant (ibid.).

The timeline of feline auditory cortical synaptogenesis covers the first 1–2 months of life, followed
by synaptic pruning [57]. In CDCs this process was delayed by 1 month and the pruning was sig-
nificantly increased [57]. It is likely that such pruning predominantly eliminates existing inactive
cortical synapses, which may involve the majority of auditory corticocortical synapses in deaf-
ness. The more active 'visual' synapses, on the other hand, may survive and become stabilized
in deafness. These visual synapses are likely those that come from other cortical areas and
from multimodal thalamic regions such as lateral posterior nucleus. These may convey multi-
modal interactions in the auditory cortex of hearing animals.

Taken together, these lines of evidence indicate that it is not the reorganized fiber tracts but
predominantly the synapses, their number, and synaptic efficacy that convey crossmodal effects.
Compared to adult-onset deafness, congenital deafness has additional effects in preventing mul-
timodal integration and potentially preserving exuberant heteromodal connections (see below).
Future studies of functional connectivity would provide clearer insights into the changes related
to sensory deprivation and crossmodal reorganization (see Outstanding questions).

Multimodal integration and its relation to crossmodal effects
The high specificity of the crossmodal effects described above suggests a tight relationship be-
tween crossmodal plasticity and regions that receive heteromodal inputs (and even multimodal
inputs) in hearing (Figure 2) [58–61]. Heteromodal influences in sensory cortices are modulating
rather than driving [62,63], often involving phase effects on oscillations [61,64,65] and reflecting
behavioral low-dimensional effects [66]. Multimodal integration requires higher associative
areas with large functional interareal connectivity [67] that provide the top-down heteromodal
inputs to sensory areas [68].

Heteromodal influences are more pronounced in higher-order auditory areas [64,69,70]. This has
been in part related to attention and motor activity, including the corollary influence of movement
[66,71]. Their effect is often inhibitory in nature, possibly with the aim to suppress responses to
self-produced or otherwise predicted sounds [71,72]. This all makes clear why a sensory system
cannot be completely encapsulated or isolated in the brain: there is a need for the ability to
modulate it depending on behavioral context. Overall, heteromodal influences in auditory cortex
are not driving but modulatory in a 'normal' brain, and they increase with increasing level of
'cortical hierarchy'.

Visual influences in auditory cortex have been observed in subjects with normal hearing when
visual and auditory inputs were coherent, for example during lipreading [73–75]. Similar effects
were further documented in hearing subjects using sign language [14]. Pre-existing visual
influences have been found in areas of hearing animals that are known to undergo crossmodal
plasticity (visual responses in cats [76], visual responses in mice [70], somatosensory responses
in ferrets [77], and visual responses in ferrets [78]). The role of these visual inputs was to modulate
an auditory response [62], including inhibitory effects [79].

These effects were sometimes reminiscent of the influence of attention on oscillatory responses
[64]. The effect has been stronger in higher-order auditory areas than in primary areas [80]. Similar
subthreshold influences have also been described in higher-order somatosensory and multisen-
sory regions [81]. Heteromodal top-down influences may be interpreted in the sense of the
Trends in Neurosciences, May 2023, Vol. 46, No. 5 381
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Figure 2. Simplified schematic of connections between sensory systems in hearing subjects. The auditory
system is shown in red, non-auditory in blue, and multisensory in grey. Connections are differentiated into driving (shown
as straight lines), defined as connections able to elicit action potentials in the absence of other active connections, and
modulatory (shown as curved dashed lines), which affect the activity of neurons but fail to cause postsynaptic action
potentials in the absence of other inputs (text for details). Connections between primary areas not shown because these
differ between different sensory cortices. Multisensory information is observable in all cortical areas (filled background), but
mainly as a modulatory influence. The main driving input comes from within the sensory system (the adequate input).
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prediction error hypothesis, where predictions penetrate through the network hierarchically from
top to bottom [82,83] and modulate the information flow in the reverse direction.

Cortical multimodal areas are extensively connected to sensory areas by top-down modula-
tions [67,84], and thus provide multimodal and hetermodal inputs to the auditory cortex
(Figure 2). Interestingly, in early deafness, higher-order auditory cortex additionally takes over
functions related to cognitive processes [85–87]. In age-related hearing loss, cognitive processes
compensate for degraded auditory input [88]. Reduced auditory acuity may reorganize the
interaction between sensory and higher-order cortices, such that cognitive and crossmodal
processes are upregulated to compensate for effortful listening, thus depleting cognitive reserve
382 Trends in Neurosciences, May 2023, Vol. 46, No. 5

Image of &INS id=
CellPress logo


Trends in Neurosciences
OPEN ACCESS
[89] and possibly underlying the association between hearing loss and cognitive decline in
adults [90].

The existing evidence thus suggests that the source of heteromodal activity in deafness depends
on pre-existing modulatory influences on neurons, partly caused by top-down inputs from asso-
ciative (multisensory) areas (Figure 3). Thus, the specificity of crossmodal plasticity with respect to
cortical areas is likely due to fiber tracts that normally connect these areas to heteromodal and
multimodal areas and provide heteromodal information also in hearing animals. Their role is
stronger, accentuated, and becomes driving only when these cortical areas are deprived of
their dominant driving input.

Studies on hearing restoration following congenital deafness additionally document issues with
multimodal binding, particularly fusion of visual with auditory inputs; processing of multimodal
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Figure 3. Schematics of the crossmodally reorganized hearing-impaired auditory system. The main
reorganization is the change of the modulatory heteromodal inputs into driving inputs, both from the secondary
heteromodal areas as well as from multimodal areas. The effect is assumed to rely on resetting the working point of
neurons in the auditory cortex. The absent auditory (adequate) input is shown by dashed lines.
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stimuli is instead dominated by the visual inputs if hearing restoration is later in life [91]. Corre-
spondingly, in CDCs the neurons in the crossmodally reorganized area dorsal cortex did not
show evidence of audiovisual fusion [49]. Corresponding outcomes have been recently reported
in congenital blindness [92]. This confirms studies showing that early multimodal experience is es-
sential for the development of multimodal processing capabilities [93–95]. The full potential of
multisensory rehabilitation cannot be harvested if sensory restoration occurs too late in congenital
deafness. In humans, the timeline for full effectiveness in restoration interventions is probably the
first 2 years of life [91]. These considerations also explain why developmental deprivation has
more severe consequences compared to late (adult-onset) deprivation.

Crossmodal plasticity: a dynamic, flexible and reversible process?
There is growing evidence of crossmodal effects in mild and aging-related hearing loss. This is
underscored by the high incidence of hearing loss in aging and the key importance of hearing loss
in the pathophysiology of age-related cognitive decline [90]. In rats, crossmodal visual plasticity has
been observed in secondary auditory areas following partial hearing loss in adulthood [96]. This
suggests that even partial adult hearing loss can induce crossmodal plasticity. Indeed, in a series
of studies in people with mild–moderate aging-related hearing loss, crossmodal effects have been
described [89,97–102]. Recent evidence shows that crossmodal reorganization appears early, within
3months of adult-onset hearing loss [89], and can be reversed with as little as 6months of treatment
with hearing aids [102]. Adding to its versatility, crossmodal plasticity reported in unilateral hearing
loss can be reversed after cochlear implant use, although somatosensory crossmodal effects appear
to reverse more completely than visual effects [103], which is consistent with a continued reliance on
the visual modality for disambiguating the auditory signal through a hearing aid or cochlear implant
[91]. However, reversibility is more limited with congenital deafness compared to adult-onset hearing
loss [104], and there is an abnormal dominance of visual inputs and absence of multisensory fusion if
congenital deafness is restored after the second year of life [91].

These studies demonstrate that crossmodal reorganization is a dynamic and relatively fast pro-
cess. It does not require structural changes and waxes and wanes with mild sensory deprivation.
The same neuronal circuitry can thus be used for crossmodal effects as well as for physiological
processing of multimodal inputs.

We propose that the first neuronal step in fast crossmodal changes is a change in overall neuronal
responsiveness (Figure 4). This is finely regulated in cortical neurons, and, in experimental models,
changes in excitability of neurons can be induced through various paradigms, such as by using
acetylcholine which can enhance intrinsic excitability [105] or by manipulations that cause
changes in the excitatory–inhibitory balance [106,107]. In deafness, the main driving input to au-
ditory neurons is eliminated, and heteromodal inputs in auditory regions are typically too weak to
drive neurons. This means that, as a first step, the neurons are silenced, leading to an inevitable
sequence of adaptation that counteracts this effect. Homeostatic plasticity [107–110] adapts the
working point of synapses and the spiking threshold of neurons, and synaptic changes affect the
excitatory–inhibitory balance to allow neurons to generate action potentials. In our view, reduced
neuronal input will cause adaptation of neuronal responsiveness by these cellular and network
mechanisms. In the absence of the adequate sensory input, it causes increased sensitivity to
the remaining inputs. This cannot fully compensate for the non-existing auditory inputs, but
heteromodal inputs may transition from an originally modulatory to a driving role, and activate de-
prived cortical areas.

Upregulation of excitability is well documented in the cortex of deaf cats ([57,111], reviewed in
[42]) and of hearing-impaired rodents [96,112,113]. Provided that inputs to neurons include
384 Trends in Neurosciences, May 2023, Vol. 46, No. 5
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heteromodal sensory information, a previously modulatory effect may change to driving input.
Such responses will be consistent with the auditory responses observed normally in these re-
gions and can be well processed by the same auditory circuitry. In milder hearing impairment,
these changes will provide a priori information (in the Bayesian sense) and will thus be naturally
adaptive. In complete deafness, crossmodal effects will only affect functions that the auditory sys-
tem has in common with other sensory systems and that are normally used to form multimodal
representations.

In this concept of dynamic adaptive crossmodal plasticity, homeostatic excitability adaptations
will serve as a volume knob on a HiFi music audio system: when input is reduced, excitability
will be increased to guarantee that all information that is available, including non-auditory informa-
tion, will be optimally exploited for behavioral advantage by strengthening functional connectivity
via synaptic plasticity. When input to the auditory cortex is appropriately restored via hearing aids
and/or cochlear implants, then excitability is dynamically downregulated, thus reversing the
crossmodal changes to some extent.

A direct consequence of such adaptation in neuronal responsiveness is a change in functional
connectivity. The appearance of heteromodal responses provides the window of opportunity
for strengthening functional interactions to other regions [114,115] that are structurally connected
but are normally functionally coupled only under specific conditions (multimodal stimulation). Neu-
ronal oscillations ubiquitously present due to properties of neuronal membranes and environmen-
tal or self-produced rhythms [116] allow an effective mechanism of long-distance coupling by
synchronized activity. Increased responsiveness also facilitates coupling under unimodal stimula-
tion in the spared modality (i.e., the sensory system that is preserved). Phase synchronization of
such oscillations has been demonstrated for between-modality coupling in hearing subjects
[61,116]. Phase synchrony between primary and secondary auditory areas have been observed
during top-down interactions in CDCs [51,52]. This mechanism is thus a plausible candidate for
crossmodal reorganization in hearing loss: oscillatory synchronization, particularly in the form of
phase reset, is under top-down control (reviewed in [116]). Dynamic crossmodal plasticity
based on increased gain in the impaired sensory input allows exploitation of top-down influences
from multisensory and cognitive centers to synchronize increased heteromodal responses with
activity from the spared modalities. This leads to the picture of a crossmodally reorganized func-
tional connectome. Increased functional coupling can lead to new axon collaterals, increase the
synaptic counts and efficacies for heteromodal inputs in the sensory-deprived areas, and explain
the easier retrograde tracer pickup in anatomical tracer studies, thus explaining more abundant
('stronger') existing connections but no ectopic connections, as observed in cats.

Functional connectivity can be studied using many methods (Box 1), including some that are ap-
plicable in humans. Functional connectivity analyses thus allow crossmodal effects to be studied
in humans both in resting state as well as in response to a stimulus (reviewed in [114,117,118]).
Figure 4. Suggested mechanism of dynamic crossmodal plasticity. In a hearing auditory cortex (A), the heteromodal
inputs are only modulatory and are therefore dependent on the driving auditory input. Provided that this is present, the
responses can be significantly modified by heteromodal inputs. In hearing loss (B) there is reduced or no driving input, and
thus homeostatic plasticity may increase excitability to such an extent that the previously weak modulating input becomes
driving. Both the heteromodal response and neuronal sensitivity thereby increase; in other words, the spiking thresholds to
an input decrease. After hearing restoration (C), the gain is reduced due to the restoration of a strong driving input. The
heteromodal input becomes modulating again. Because hearing restoration is rarely complete, the gain of cortical neurons
is between that of deaf and hearing subjects. In the schematics illustrated, the changes are modeled only by an effect on
spiking threshold and response increase. This is a simplification of the multiplicity of homeostatic processes that are
present physiologically.
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Box 1. Connectivity quantification

The connectome, defined here as the totality of all synaptic connections between neurons in the brain, can be studied
using many different methods [150]:

Structural connectivity

This defines the totality of fiber tracts connecting the brain. It can be analyzed using diffusor tensor imaging in humans or
anatomical tracers in animals. Fiber tracts are established early in development, drivenmainly by geneticmakeup. Fiber tracts
are a precondition for functional interactions, but structural and functional connectivities correlate only weakly [151].
Functional connectivity additionally depends on synaptic counts, synaptic efficacies, and excitatory–inhibitory balance.

Functional connectivity (FC)

FC defines statistical dependencies of neural activity. It can be subdivided into stimulus-related and stimulus-independent
functional connectivity. Effective connectivity refers to the influence that one system exerts over the other (is directed).

Stimulus-independent FC can be assessed by (i) direct stimulation of one neural structure (electric or optogenetic) and re-
cording in the other. In addition to fiber tracts (structural connectivity), it also depends on synaptic organization, synaptic
efficacy, and the receptiveness of the target structure [52,152]; (ii) ongoing activity reveals different brain networks acti-
vated at rest or in the attentive condition such as the default mode network [118]. This method provides general informa-
tion on brain networks and their hubs.

Stimulus-dependent connectivity includes the effects of stimuli on the networks. The overall brain networks can reconfig-
ure depending on stimulation (reviewed in [118,153]). Stimulus-dependent connectivity must disentangle common inputs
from direct interactions. It allows conclusions on how stimuli propagate in the brain.

Measures allowing quantification of connectivity

Several measures allow functional connectivity to be quantified

(i) Correlations [154] have the disadvantage of being dependent on the temporal function of the response, but have
historically allowed pioneering insights into brain networks.

(ii) Granger causality [155,156] quantifies effective ongoing and stimulus-dependent connectivity. It provides the di-
rectionality of the connection, but is influenced by signal power and requires longer time-windows for calculation.

(iii) Mutual information and transfer entropy [157,158] directly quantify information transfer. They are influenced by
signal power and require longer time-windows for calculation.

(iv) Phase-based measures such as phase coherence, pairwise phase consistency, and spike-field coherence
[159,160] are power-independent and when computed on induced activity are also independent of common
input. Their predominant advantage is the short time-window required for quantification; however, they do not
provide directionality.

(v) A combination of several methods. For example, separating the time-frequency bands in which phase-based
methods detect connectivity at high temporal resolution allows subsequent extraction of directional information
(in the corresponding bands) using effective connectivity measures (e.g., Granger causality) [52].
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Several publications have reported increased functional connectivity between visual, multisensory,
and auditory cortex following hearing loss [119–121], with a contribution frommultisensory parietal
areas [122]. A decrease in intramodal connectivity and an increase in crossmodal connectivity have
been reported [120]. Crossmodal reorganizations were susceptible to compensation of hearing
loss by hearing aids [123] and were predictive or related to outcomes after hearing compensation
[121,124,125]. These findings support the concept of dynamic flexible crossmodal plasticity that
appears with hearing loss and partially subsides after hearing therapy.

In CDCs, reduced activity in the ongoing alpha band has been found in the crossmodally
reorganized posterior auditory area, but not in area A1 [50] (similar visual effects in congenitally
blind humans are discussed in [126]). Alpha oscillations have been additionally related to excitabil-
ity changes of neurons [115]. At the same time, a loss of top-down interactions between second-
ary and primary auditory cortex in CDCswas prominent in the alpha band [52]. This could indicate
that loss of alpha power reflects loss of top-down influence on early areas rather than crossmodal
Trends in Neurosciences, May 2023, Vol. 46, No. 5 387
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reorganization per se. Similarly, alpha oscillations convey top-down interactions in humans [127],
and their power has been related to speech intelligibility in hearing subjects [128,129]. Adult
onset of hearing loss may also provide a different oscillatory signature than congenital hearing
loss (e.g., theta oscillations [130] or delta oscillations [131]). Methodologically, oscillatory activity
has the advantage of allowing a focus on different oscillatory bands, thus separating parallel
neural processes [117], and further allowing separation of common input from corticocortical in-
teraction by calculating induced oscillations (Figure 5) [114,116,132]. This is essential for studying
corticocortical interactions in the absence of common thalamic input, to a large extent reflected in
the traditional evoked response components. Current neuroscience techniques provide the tools
required for more detailed analysis of these effects in the future (Box 1).

Crossmodal plasticity resulting from gain change and subsequent effects on functional connec-
tivity, although adaptive, has limitations: in congenital deafness it cannot provide the substrate
for multisensory integration and cannot guarantee normal development of the auditory system.
Critical auditory periods are not due to colonization by the visual or somatosensory systems
from crossmodal processes; they are instead a consequence of an absence of adequate sensory
input, consequent abnormal development, and pronounced loss of cortical auditory synapses
(reviewed in [42,43]). Therefore, corticocortical interactions are predominantly affected by
early deprivation [50]. Only some auditory areas can take over specific visual and somatosensory
functions. Reduced thickness in deep cortical layers (a predominant source of top-down
interactions) throughout all studied auditory cortical areas [53] suggests that, despite crossmodal
reorganization in congenital hearing loss, massive alterations in the cortical microcircuitry
are observable [50,52]. Furthermore, dystrophic changes in deep layers were observed in all
studied auditory areas, including those not involved in crossmodal reorganization. This means
that the effect is due to auditory deprivation per se, and is not compensated by crossmodal
reorganization. In vision loss, processing within auditory cortex is strengthened in the bottom-up
direction, consistent with a shift in the sensory balance in favor of hearing [56,79]. This supports
the present concept and represents another interesting aspect of future crossmodal research in
hearing loss.

There are also limitations regarding the compensatory nature of this plasticity: visual stimuli may
help (in the Bayesian sense) to disambiguate the auditory inputs. Visual stimulation alone, how-
ever, obviously cannot compensate for loss of auditory experience nor can it negatively interfere
after early restoration of hearing. Finally, the early developmental auditory effects of deafness are
subject to critical periods, and this may compromise the ability to form multimodal representation
by use of the deprived modality.

Clinical implications
Dynamic flexible crossmodal plasticity has several clinical implications. In adult-onset hearing
loss, crossmodal plasticity can be adaptive and compensatory in many ways. When it is not pos-
sible to restore a deprived input, a 'sensory substitution' approach is used to transform informa-
tion from the spared modality (within certain limits using its specific properties) to compensate for
deficits in the deprived modality [133]. Such an approach has been reported in blind subjects
using acoustic sonification of the visual information stream [134,135]. Similarly, eyeglasses
which convert speech to subtitles for persons with hearing loss have recently become technically
possible and represent a future commercial crossmodal application. In hearing loss, lipreading
which activates auditory cortex is used routinely for rehabilitation [104,136–141]. Somatosensory
enhancement of speech perception via cochlear implants was reported to aid speech under-
standing in deaf patients [142,143]. Thus, crossmodal stimulation can be harvested for clinical
applications using the spared modalities [144].
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Figure 5. Functional connectivity related to an auditory stimulus determined from oscillatory activity. (A) Primary auditory cortex response to an auditory
stimulus (click train, three clicks, train duration 0.006 s) as observed in local field potentials recorded with a microelectrode. (Top) 30 trials of the stimulus presented at
0 s result in a response that is reproducible (phase-locked) in each trial (within 0–0.1 s post-stimulus) and a response that jitters in time from trial to trial (0.2–0.6 s).
(Bottom) Time–frequency representation (TFR) allows computation of the mean total power, revealing both responses that cover all relevant frequency ranges. (B)
Computing an average LFP in the time domain mainly preserves the phase-locked response (0–0.1 s). TFR reveals the evoked power. (C) Subtracting the average from
each trial better isolates the non-phase-locked induced activity that is well preserved in the TFR where the response does not disappear during averaging because
power is averaged but not the amplitude. (D) To compute connectivity between two oscillators, the trial-to-trial stability in phase differences of oscillations quantifies the
coupling strength (spring stiffness). θj defines the phase difference in oscillations for trial j. (E) When the phase differences in two different trials (denoted j, k) are plotted
on the unit circle, the projection of one onto another reveals their stability. This is achieved by calculating the sum all mutual dot products of the unitary vectors for each
trial combination, normalized to the number of trial combinations. Abbreviation: PPC, pairwise phase consistency. (F) Example of two sites recorded in primary and
secondary auditory cortex of a hearing cat, demonstrating a PPC increase in the time between 0.2 and 0.5 s after presentation of the brief click train. Using this
approach, the synchrony of the activity between cortical sites can be determined with specificity to frequency and with millisecond precision. Using induced activity for
PPC computation additionally eliminates common inputs. Data from [52].
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Outstanding questions
What are the exact molecular
mechanisms of gain change in
crossmodal plasticity, and are they the
same for the different cortical areas
involved? Can they be leveraged
clinically? Identifying such molecular
mechanisms would open a wide field
for pharmacological modulation of
cortical plasticity.

Given its top-downnature, is crossmodal
reorganization associated with up- or
downregulation of cognitive reserve in
age-related hearing loss, and does it
play any role in the link between hearing
loss and cognitive decline?

How can multimodal representations be
established at a later age in congenital
deprivation? Are there ways to extend
critical periods by behavioral or new
molecular approaches?

What is the therapeutic potential of
sensory substitution in hearing-impaired
individuals (e.g., glasses that translate
speech into written text in real time) for
auditory cortical representations? How
effective are these approaches for
clinical applications – do they support or
prevent adaptations to the newly
provided auditory input?

How different is crossmodal plasticity
between sensory systems? A different
developmental sequence and different
roles of the sensory systems in
cognition suggest that differences in
crossmodal plasticity across sensory
systems may exist. Addressing this
question is challenging, partly because
the reversibility of total deprivation is
most clinically feasible in the auditory
system; it is often an elusive goal in the
other systems. New methodological
approaches would be required for
progress in this area.

Should oral language learning for deaf
children with cochlear implants be
multimodal, exploiting all crossmodal
adaptations, or should it be primarily
auditory-focused to prevent excessive
crossmodal reliance?

Is crossmodal reorganization reversible
even after very long periods of age-
related hearing, given that typically
older adults receive hearing aids after
10+ years of hearing loss onset?
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In prelingual (congenital) deafness, including visual cues in communication is adaptive and may
be leveraged clinically, particularly in the time before intervention. The disputed maladaptive con-
sequences of visual crossmodal plasticity are in our view unlikely to be an issue if restoration of
hearing is provided as soon as is feasible (within the critical period) to assure a functional auditory
system and multisensory interactions that include the auditory modality.

Consistent observations in other sensory systems
The notions discussed here are further supported by observations on other sensory systems. In
blindness, rewiring does not appear to be necessary for the crossmodal effects being reported
[145]; however, response properties and implicitly functional interactions in occipitotemporal net-
work are affected by blindness [146–148]. Similarly, somatomotor reorganization following ampu-
tations is somewhat limited and corresponds to the present considerations [149]. Taken
together, it appears as if the textbook examples of brain plasticity in function loss need revision:
the crossmodal adaptations do not rely on the ability of the brain to take over (any) functions,
but rather uses pre-existing circuitry that is modified depending on the overall input to the given
areas, governed by excitatory–inhibitory balance and homeostatic plasticity. In such a perspec-
tive, crossmodal plasticity is exploitable for therapeutic approaches and allows objective monitor-
ing of the efficacy of neurosensory restoration and subsequent rehabilitation.

Concluding remarks
The brain can make use of the same neuronal circuitry for qualitatively different functions by
dynamically adapting synaptic gain (synaptic rescaling) and inhibition, causing stimulus- and
condition-dependent functional connectivity reorganization in the absence of structural changes.
This is particularly advantageous in the case of reduced sensory input. The evidence discussed in
this article is consistent with the notion that the substrate of crossmodal reorganization is essen-
tially synaptic and functional, that it operates at the microscopic scale, and leads to functional
connectivity changes in the absence of large-scale rewiring of the brain. Auditory responsiveness
is generally preserved in the absence of hearing experience, both in primary and higher-order
auditory cortical areas. Crossmodal reorganization is likely supported by (i) few exuberant
connections are formed during development and abnormally persist into adulthood in congenital
hearing loss, and (ii) local increases in axonal collaterals and in the synaptic efficacy of
heteromodal inputs, facilitated by (iii) increased sensitivity of target neurons deprived of their
natural (adequate) auditory input, attentional modulation, and (iv) their influences on neuronal
oscillations and their interareal coupling. Heteromodal inputs originate predominantly from
top-down interactions that can similarly affect neuronal oscillations. This explains why even
adult-onset mild-to-moderate hearing loss can facilitate crossmodal reorganization that is re-
duced or reversed after hearing restoration. Understanding the neuronal mechanisms of how
functional connectivity and thus information flow can be reversed from bottom-up to top-down
will provide further insight into the constraints of crossmodal plasticity.
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